版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省鸡泽、曲周、邱县、馆陶四县2025届数学高一上期末考试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,且,则的最小值为()A.4 B.C. D.62.以下命题(其中,表示直线,表示平面):①若,,则;②若,,则;③若,,则;④若,,则其中正确命题的个数是A.0个 B.1个C.2个 D.3个3.已知角的终边经过点,则的值为()A.11 B.10C.12 D.134.设,,,则,,三者的大小关系是()A. B.C. D.5.若集合中的元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰三角形6.一个扇形的弧长与面积都是5,则这个扇形圆心角的弧度数为A. B.C. D.7.设奇函数f(x)在(0,+∞)上为减函数,且f(1)=0,则不等式<0的解集为()A.(-1,0)∪(1,+∞) B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞) D.(-1,0)∪(0,1)8.已知函数则函数值域是()A. B.C. D.9.已知某几何体的三视图如图所示,根据图中标出的尺寸单位:,可得这个几何体得体积是A. B.C.2 D.410.已知直线、、与平面、,下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则二、填空题:本大题共6小题,每小题5分,共30分。11.已知tanα=3,则sinα(cosα-sinα)=______12.已知平面和直线,给出条件:①;②;③;④;⑤(1)当满足条件_________时,有;(2)当满足条件________时,有.(填所选条件的序号)13.已知,则___________.(用含a的代数式表示)14.若,则___________.15.过两直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线方程为_______________.16.已知,则的值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.中国茶文化博大精深,小明在茶艺选修课中了解到,不同类型的茶叶由于在水中溶解性的差别,达到最佳口感的水温不同.为了方便控制水温,小明联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是,环境温度是,则经过时间(单位:分)后物体温度将满足:,其中为正的常数.小明与同学一起通过多次测量求平均值的方法得到初始温度为98℃的水在19℃室温中温度下降到相应温度所需时间如表所示:从98℃下降到90℃所用时间1分58秒从98℃下降到85℃所用时间3分24秒从98℃下降到80℃所用时间4分57秒(1)请依照牛顿冷却模型写出冷却时间(单位:分)关于冷却水温(单位:℃)函数关系,并选取一组数据求出相应的值(精确到0.01).(2)“碧螺春”用75℃左右的水冲泡可使茶汤清澈明亮,口感最佳.在(1)的条件下,水煮沸后在19℃室温下为获得最佳口感大约冷却___________分钟左右冲泡,请在下列选项中选择一个最接近的时间填在横线上,并说明理由.A.5B.7C.10(参考数据:,,,,)18.在三棱锥中,,,O是线段AC的中点,M是线段BC的中点.(1)求证:PO⊥平面ABC;(2)求直线PM与平面PBO所成的角的正弦值.19.已知圆与直线相切,圆心在直线上,且直线被圆截得的弦长为.(1)求圆的方程,并判断圆与圆的位置关系;(2)若横截距为-1且不与坐标轴垂直的直线与圆交于两点,在轴上是否存在定点,使得,若存在,求出点坐标,若不存在,说明理由.20.已知直线过点,并与直线和分别交于点,若线段被点平分,求:(1)直线的方程;(2)以坐标原点为圆心且被截得的弦长为的圆的方程21.在正方体中挖去一个圆锥,得到一个几何体,已知圆锥顶点为正方形的中心,底面圆是正方形的内切圆,若正方体的棱长为.(1)求挖去的圆锥的侧面积;(2)求几何体的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用基本不等式“1”的代换求目标式的最小值,注意等号成立条件.【详解】由,当且仅当时等号成立.故选:C2、A【解析】利用线面平行和线线平行的性质和判定定理对四个命题分别分析进行选择【详解】①若a∥b,b⊂α,则a∥α或a⊂α,故错;②若a∥α,b∥α,则a,b平行、相交或异面,故②错;③若a∥b,b∥α,则a∥α或a⊂α,故③错;④若a∥α,b⊂α,则a、b平行或异面,故④错正确命题个数为0个,故选A.【点睛】本题考查空间两直线的位置关系,直线与平面的位置关系,主要考查线面平行的判定和性质.3、B【解析】由角的终边经过点,根据三角函数定义,求出,带入即可求解.【详解】∵角的终边经过点,∴,∴.故选:B【点睛】利用定义法求三角函数值要注意:(1)三角函数值的大小与点P(x,y)在终边上的位置无关,严格代入定义式子就可以求出对应三角函数值;(2)当角的终边在直线上时,或终边上的点带参数必要时,要对参数进行讨论4、D【解析】根据对数的运算变形、,再根据对数函数的性质判断即可;【详解】解:,,因为函数在定义域上单调递增,且,所以,即,故选:D5、D【解析】根据集合元素的互异性即可判断.【详解】由题可知,集合中的元素是的三边长,则,所以一定不是等腰三角形故选:D6、D【解析】,又,故选D考点:扇形弧长公式7、C【解析】利用函数奇偶性,等价转化目标不等式,再结合已知条件以及函数单调性,即可求得不等式解集.【详解】∵f(x)为奇函数,故可得,则<0等价于.∵f(x)在(0,+∞)上为减函数且f(1)=0,∴当x>1时,f(x)<0.∵奇函数图象关于原点对称,∴在(-∞,0)上f(x)为减函数且f(-1)=0,即x<-1时,f(x)>0.综上使<0的解集为(-∞,-1)∪(1,+∞)故选:.【点睛】本题考查利用函数奇偶性和单调性解不等式,属综合基础题.8、B【解析】结合分段函数的单调性来求得的值域.【详解】当吋,单调递增,值域为;当时,单调递增,值域为,故函数值域为.故选:B9、B【解析】先根据三视图得到几何体的形状,然后再根据条件中的数据求得几何体的体积【详解】由三视图可知该几何体是一个以俯视图为底面的四棱锥,如下图中的四棱锥由题意得其底面面积,高,故几何体的体积故选B【点睛】由三视图还原几何体的方法(1)还原后的几何体一般为较熟悉的柱、锥、台、球的组合体(2)注意图中实、虚线,实际是原几何体中的可视线与被遮挡线(3)想象原形,并画出草图后进行三视图还原,把握三视图和几何体之间的关系,与所给三视图比较,通过调整准确画出原几何体10、D【解析】利用线线,线面,面面的位置关系,以及垂直,平行的判断和性质判断选项.【详解】A.若,则或异面,故A不正确;B.缺少垂直于交线这个条件,不能推出,故B不正确;C.由垂直关系可知,或相交,或是异面,故C不正确;D.因为,所以平面内存在直线,若,则,且,所以,故D正确.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用同角三角函数基本关系式化简所求,得到正切函数的表达式,根据已知即可计算得解【详解】解:∵tanα=3,∴sinα(cosα﹣sinα)故答案为【点睛】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基本知识的考查12、(1).③⑤;(2).②⑤【解析】若m⊂α,α∥β,则m∥β;若m⊥α,α∥β,则m⊥β故答案为(1)③⑤(2)②⑤考点:本题主要考查直线与平面垂直的位置关系点评:熟练掌握直线与平面平行、垂直的判定与性质,基础题13、【解析】利用换底公式化简,根据对数的运算法则求解即可【详解】因为,所以故答案为:.14、1【解析】由已知结合两角和的正切求解【详解】由,可知tan(α+β)=1,得,即tanα+tanβ=,∴故答案为1【点睛】本题考查两角和的正切公式的应用,是基础的计算题15、【解析】联立两直线方程求得交点坐标,求出平行于直线4x-3y-7=0的直线的斜率,由点斜式的直线方程,并化为一般式【详解】联立,解得∴两条直线2x+y-8=0和x-2y+1=0的交点为(3,2),∵直线4x-3y-7=0的斜率为,∴过两条直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线的方程为y-2=(x-3)即为4x-3y-6=0故答案为4x-3y-6=0【点睛】本题考查了直线的一般式方程与直线平行的关系,训练了二元一次方程组的解法,是基础题16、【解析】用诱导公式计算【详解】,,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)大约冷却分钟,理由见解析.【解析】(1)根据求得冷却时间(单位:分)关于冷却水温(单位:℃)的函数关系,结合对数运算求得.(2)根据(1)中的函数关系式列方程,由此求得冷却时间.【小问1详解】依题意,,,,,,.,依题意,则.若选:从98℃下降到90℃所用时间:1分58秒,即分,则若选:从98℃下降到85℃所用时间:3分24秒,即分,若选:从98℃下降到80℃所用时间:4分57秒,即分,所以.【小问2详解】结合(1)可知:,依题意,.所以大约冷却分钟.18、(1)证明见解析;(2)【解析】(1)利用勾股定理得出线线垂直,结合等边三角形的特点,再次利用勾股定理得出线线垂直,进而得出线面垂直;(2)根据线面垂直面,得出线和面的夹角,从而得出线面角的正弦值.【详解】(1)由,有,从而有,且又是边长等于的等边三角形,.又,从而有又平面.(2)过点作交于点,连.由(1)知平面,得,又平面是直线与平面所成的角.由(1),从而为线段的中点,,,所以直线与平面所成的角的正弦值为19、(1)相交(2)【解析】(1)根据条件求得圆心和半径,从而由圆心距确定两圆的位置关系;(2)设,与圆联立得,用坐标表示斜率结合韦达定理求解即可.试题解析:(1)设圆心为,则,(2)联立,,(2)法二:联立假设存在则,故存在)满足条件.20、(1);(2).【解析】(1)依题意可设,,分别代入到直线和中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年合伙人投资协议样本版B版
- 2024年制造业临时工劳动协议范本版B版
- 2024年二手车交易协议样式一
- 2024年度专业舞台音响设备采购协议版B版
- 2024年员工离职综合协议范本
- 2024年工程成本控制与结算合同
- 2024年二手房买卖含贷款细节协议范本
- 2024年度企业广告宣传及赞助合同2篇
- 2024年度冷冻商品物流配送协议样本版B版
- 2024年买卖交易协议违约赔偿明细规定版B版
- 建筑与市政危大工程清单
- 小学科学教师实验技能大赛理论试卷题含答案
- 新生代员工的管理与激励技巧课件
- 道医养生要义(修改版) - 副本课件
- 医院护工培训-教学课件
- 泌尿外科医疗质量控制指标(2022版)
- 《家庭暴力中的正当防卫问题分析(论文)9500字》
- 大班教案:有趣的动物叫声
- 周围神经病变
- 青少年特发性脊柱侧弯线基本测量PPT
- 土方回填工程质量检验标准
评论
0/150
提交评论