版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江西省上饶县中学高一上数学期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,,,则a,b,c的大小关系是()A. B.C. D.2.命题:,命题:(其中),那么是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知命题,,则命题否定为()A., B.,C., D.,4.已知是锐角,那么是()A.第一象限角 B.第二象限角C.小于180°的正角 D.第一或第二象限角5.函数f(x)=,的图象大致是()A. B.C. D.6.已知函数,若f(a)=10,则a的值是()A.-3或5 B.3或-3C.-3 D.3或-3或57.设和两个集合,定义集合,且,如果,,那么A. B.C. D.8.长方体的一个顶点上的三条棱长分别为3、4、5,且它的8个顶点都在同一个球面上,则这个球的表面积是()A. B.C. D.都不对9.已知的三个顶点、、及平面内一点满足,则点与的关系是()A.在的内部 B.在的外部C.是边上的一个三等分点 D.是边上的一个三等分点10.已知函数的图象的一部分如图1所示,则图2中的函数图象对应的函数解析式为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数的定义域为,且单调递减,则________.12.已知函数在区间是单调递增函数,则实数的取值范围是______13.已知,则的最小值为_______________.14.已知函数若是函数的最小值,则实数a的取值范围为______15.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术.现有两名剪纸艺人创作甲、乙两种作品,他们在一天中的工作情况如图所示,其中点Ai的横、纵坐标分别为第i名艺人上午创作的甲作品数和乙作品数,点Bi的横、纵坐标分别为第i名艺人下午创作的甲作品数和乙作品数,i=1,①该天上午第1名艺人创作的甲作品数比乙作品数少;②该天下午第1名艺人创作的乙作品数比第2名艺人创作的乙作品数少;③该天第1名艺人创作的作品总数比第2名艺人创作的作品总数少;④该天第2名艺人创作的作品总数比第1名艺人创作的作品总数少.其中所有正确结论序号是___________.16.如果,且,则化简为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)化简;(2)若,求的值18.已知,是夹角为的两个单位向量,且向量,求:,,;向量与夹角的余弦值19.已知函数是定义在上奇函数,且.(1)求,的值;(2)判断在上的单调性,并用定义证明.20.已知角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点P(-3,4)(1)求,的值;(2)的值21.已知函数的图象的对称中心到对称轴的最小距离为.(1)求函数的解析式,并写出的单调区间;(2)求函数在区间上的最小值和最大值以及相对应的x值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】先判断,再判断得到答案.【详解】;;;,即故选:【点睛】本题考查了函数值的大小比较,意在考查学生对于函数性质的灵活运用.2、A【解析】根据充分性、必要性的定义,结合特例法进行判断即可.【详解】当时,,所以由能推出,当时,显然当时,满足,但是不成立,因此是的充分不必要条件,故选:A3、D【解析】根据全称命题的否定是特称命题形式,直接选出答案.【详解】命题,,是全称命题,故其否定命题为:,,故选:D.4、C【解析】由题知,故,进而得答案.【详解】因为是锐角,所以,所以,满足小于180°的正角.其中D选项不包括,故错误.故选:C5、A【解析】判断函数的奇偶性,以及函数在上的符号,利用排除法进行判断即可【详解】∵f(x)=,∴,,∴函数是奇函数,排除D,当时,,则,排除B,C.故选:A6、A【解析】根据分段函数的解析式,分两种情况讨论分别求得或.【详解】若,则舍去),若,则,综上可得,或,故选A.【点睛】本题主要考查分段函数的解析式、分段函数求自变量,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.7、D【解析】根据的定义,可求出,,然后即可求出【详解】解:,;∴.故选D.【点睛】考查描述法的定义,指数函数的单调性,正弦函数的值域,属于基础题8、B【解析】由题意长方体的外接球的直径就是长方体的对角线,求出长方体的对角线,就是求出球的直径,然后求出球的表面积【详解】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:;则这个球的表面积是:故选:9、D【解析】利用向量的运算法则将等式变形,得到,据三点共线的充要条件得出结论【详解】解:,,∴是边上的一个三等分点故选:D【点睛】本题考查向量的运算法则及三点共线的充要条件,属于基础题10、B【解析】利用三角函数的图象变换规律可求得结果.【详解】观察图象可知,右方图象是由左方图象向左移动一个长度单位后得到的图象,再把的图象上所有点的横坐标缩小为原来的(纵坐标不变)得到的,所以右图的图象所对应的解析式为.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据幂函数的单调性,得到的范围,再由其定义域,根据,即可确定的值.【详解】因为幂函数的定义域为,且单调递减,所以,则,又,所以的所有可能取值为,,,当时,,其定义域为,不满足题意;当时,,其定义域为,满足题意;当时,,其定义域为,不满足题意;所以.故答案为:12、【解析】求出二次函数的对称轴,即可得的单增区间,即可求解.【详解】函数的对称轴是,开口向上,若函数在区间是单调递增函数,则,故答案为:13、##225【解析】利用基本不等式中“1”的妙用即可求解.【详解】解:因为,所以,当且仅当,即时等号成立,所以的最小值为.故答案为:.14、【解析】考虑分段函数的两段函数的最小值,要使是函数的最小值,应满足哪些条件,据此列出关于a的不等式,解得答案.【详解】要使是函数的最小值,则当时,函数应为减函数,那么此时图象的对称轴应位于y轴上或y轴右侧,即当时,,当且仅当x=1时取等号,则,解得,所以,故答案为:.15、①②④【解析】根据点的坐标的意义结合图形逐个分析判断即可【详解】对于①,由题意可知,A1的横、纵坐标分别为第1名艺人上午创作的甲作品数和乙作品数,由图可知A1的横坐标小于纵坐标,所以该天上午第对于②,由题意可知,B1的纵坐标为第1名艺人下午创作的乙作品数,B2的纵坐标为第2名艺人下午创作的乙作品数,由图可知B1的纵坐标小于B2的纵坐标,所以该天下午第对于③,④,由图可知,A1,B1的横、纵坐标之和大于A2故答案为:①②④16、【解析】由,且,得到是第二象限角,由此能化简【详解】解:∵,且,∴是第二象限角,∴故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2).【解析】(1)根据诱导公式及同角关系式化简即得;(2)根据可知,从而求得结果.【小问1详解】由诱导公式可得:;【小问2详解】由于,有,得,,可得故值为.18、(1);(2)【解析】根据,是夹角为的两个单位向量即可求出,然后利用向量的模的公式和数量积公式即可求得结果;根据即可求出向量夹角的余弦值【详解】是夹角为的两个单位向量;;,,;;【点睛】本题考查向量模的公式,考查向量数量积计算公式以及向量夹角的余弦公式,属于基础题19、(1),;(2)证明见解析【解析】(1)根据已知条件,为奇函数,利用可以求解出参数b,然后带入到即可求解出参数a,得到函数解析式后再去验证函数是否满足在上的奇函数即可;(2)由第(1)问求解出的函数解析式,任取,,做差,通过因式分解判断差值的符号,即可证得结论.【小问1详解】由已知条件,函数是定义在上的奇函数,所以,,所以,所以,检验,为奇函数,满足题意条件;所以,.小问2详解】在上单调递增,证明如下:任取,,;其中,,所以,故在上单调递增.20、(1);(2).【解析】(1)由题意利用任意角的三角函数的定义,求得sinα,cosα的值(2)由条件利用诱导公式,求得的值【详解】解:(1)∵角α的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点P(﹣3,4),故,.(2)由(1)得.【点睛】本题主要考查任意角的三角函数的定义,诱导公式的应用,属于基础题21、(1),增区间为,,减区间为,;(2)最小值为,此时;最大值为,此时.【解析】(1)根据题意求得的最小正周期,即可求得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【语文课件】平分生命课件
- 《LDO培训讲义》课件
- 《平安福投保规则》课件
- 《销售口才培训》课件
- 《保健食品及应用》课件
- 《淋巴细胞jy》课件
- 小学生国学课件模板
- 初二信息技术课件
- 《母婴店促销方案》课件
- 病毒检测用医疗诊断设备产品入市调查研究报告
- 2024年部编版九年级语文上册电子课本(高清版)
- 2024年江西省高考地理真题(原卷版)
- 中职兽药与药理课件
- 2024年新版全员消防安全知识培训
- ω-3脂肪酸处方药物在老年疾病中的应用专家共识(2024版)解读
- 硬件测试岗位招聘笔试题与参考答案(某大型央企)
- 2024年新改版人教版三年级上册道德与法治全册知识点
- 专题09 完形填空 考点2 生活哲理类2024年中考英语真题分类汇编
- 项目验收通知书模板
- 新版工贸企业重大事故隐患-题库
- 2024年四川成都铁路局招聘1015人历年(高频重点提升专题训练)共500题附带答案详解
评论
0/150
提交评论