广西玉林市陆川县2025届数学高二上期末教学质量检测试题含解析_第1页
广西玉林市陆川县2025届数学高二上期末教学质量检测试题含解析_第2页
广西玉林市陆川县2025届数学高二上期末教学质量检测试题含解析_第3页
广西玉林市陆川县2025届数学高二上期末教学质量检测试题含解析_第4页
广西玉林市陆川县2025届数学高二上期末教学质量检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西玉林市陆川县2025届数学高二上期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.方程表示的曲线为()A.抛物线与一条直线 B.上半抛物线(除去顶点)与一条直线C.抛物线与一条射线 D.上半抛物线(除去顶点)与一条射线2.在等差数列中,若,则的值为()A. B.C. D.3.东汉末年的数学家赵爽在《周髀算经》中利用一副“弦图”,根据面积关系给出了勾股定理的证明,后人称其为“赵爽弦图”.如图1,它由四个全等的直角三角形与一个小正方形拼成的一个大正方形.我们通过类比得到图2,它是由三个全等的钝角三角形与一个小等边三角形拼成的一个大等边三角形.对于图2.下列结论正确的是()①这三个全等的钝角三角形不可能是等腰三角形;②若,,则;③若,则;④若是的中点,则三角形的面积是三角形面积的7倍.A.①②④ B.①②③C.②③④ D.①③④4.(2017新课标全国卷Ⅲ文科)已知椭圆C:的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为A. B.C. D.5.命题“存在,使得”的否定为()A.存在, B.对任意,C.对任意, D.对任意,6.为调查学生的课外阅读情况,学校从高二年级四个班的182人中随机抽取30人了解情况,若用系统抽样的方法,则抽样的间隔和随机剔除的个数分别为()A.6,2 B.2,3C.2,60 D.60,27.已知点是椭圆方程上的动点,、是直线上的两个动点,且满足,则()A.存在实数使为等腰直角三角形的点仅有一个B.存在实数使为等腰直角三角形的点仅有两个C.存在实数使为等腰直角三角形的点仅有三个D.存在实数使为等腰直角三角形的点有无数个8.函数,则不等式的解集是()A. B.C. D.9.已知复数满足,其中为虚数单位,则的共轭复数为()A. B.C. D.10.直线的斜率是方程的两根,则与的位置关系是()A.平行 B.重合C.相交但不垂直 D.垂直11.已知全集,集合,,则()A. B.C. D.12.设是双曲线的两个焦点,为坐标原点,点在上且,则的面积为()A. B.3C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系中,直线与的交点为,以为圆心作圆,圆上的点到轴的最小距离为(Ⅰ)求圆的标准方程;(Ⅱ)过点作圆的切线,求切线的方程14.椭圆上一点到两个焦点的距离之和等于,则的标准方程为______.15.已知向量,,若,则______16.已知函数,若有两个零点,则的范围是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列中,,且(1)求证:数列是等差数列,并求出;(2)数列前项和为,求18.(12分)已知椭圆C:的上顶点与椭圆的左右顶点连线的斜率之积为-.(1)求椭圆C的离心率(2)点M(,)在椭圆C上,椭圆的左顶点为D,上顶点为B,点A的坐标为(1,0),过点D的直线L与椭圆在第一象限交于点P,与直线AB交于点Q设L的斜率为k,若,求k的值.19.(12分)已知是抛物线的焦点,直线交拋物线于、两点.(1)若直线过点且,求;(2)若平分线段,求直线的方程.20.(12分)如图,在直三棱柱中,,,,分别为,,的中点,点在棱上,且,,.(1)求证:平面;(2)求证:平面平面;(3)求平面与平面的距离.21.(12分)已知是椭圆的两个焦点,P为C上一点,O为坐标原点(1)若为等边三角形,求C的离心率;(2)如果存在点P,使得,且的面积等于16,求b的值和a的取值范围.22.(10分)曲线的左、右焦点分别为,左、右顶点分别为,C上的点M满足,且直线的斜率之积等于(1)求C的方程;(2)过点的直线l交C于A,B两点,若,其中,证明:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】化简得出或,由此可得出方程表示的曲线.【详解】由可得或,所以,方程表示的曲线为上半抛物线(除去顶点)与一条直线,故选:B.2、C【解析】利用等差数列性质可求得,由可求得结果.【详解】由等差数列性质知:,,解得:;又,.故选:C.3、A【解析】对于①,由三角形大边对大角的性质分析,对于②,根据题意利用正弦定理分析,对于③,利用余弦定理分析,对于④,利用三角形的面积公式分析判断【详解】对于①,根据题意,图2,它是由三个全等的钝角三角形与一个小等边三角形拼成的一个大等边三角形,故,,所以这三个全等的钝角三角形不可能是等腰三角形,故①正确;对于②,由题知,在中,,,,所以,所以由正弦定理得解得,因为,所以,故②正确;对于③,不妨设,所以在中,由余弦定理得,代入数据得,所以,所以,故③错误;对于④,若是的中点,则,所以,故④正确.故选:A第II卷(非选择题4、A【解析】以线段为直径的圆的圆心为坐标原点,半径为,圆的方程为,直线与圆相切,所以圆心到直线的距离等于半径,即,整理可得,即即,从而,则椭圆的离心率,故选A.【名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.5、D【解析】根据特称命题否定的方法求解,改变量词,否定结论.【详解】由题意可知命题“存在,使得”的否定为“对任意,”.故选:D.6、A【解析】根据系统抽样的方法即可求解.【详解】从人中抽取人,除以,商余,故抽样的间隔为,需要随机剔除人.故选:A.7、B【解析】求出点到直线的距离的取值范围,对点是否为直角顶点进行分类讨论,确定、的等量关系,综合可得出结论.【详解】设点,则点到直线的距离为.因为椭圆与直线均关于原点对称,①若为直角顶点,则.当时,此时,不可能是等腰直角三角形;当时,此时,满足是等腰直角三角形的直角顶点有两个;当时,此时,满足是等腰直角三角形的直角顶点有四个;②若不是直角顶点,则.当时,满足是等腰直角三角形的非直角顶点不存在;当时,满足是等腰直角三角形的非直角顶点有两个;当时,满足是等腰直角三角形非直角顶点有四个.综上所述,当时,满足是等腰直角三角形的点有八个;当时,满足是等腰直角三角形的点有六个;当时,满足是等腰直角三角形的点有四个;当时,满足是等腰直角三角形的点有两个;当时,满足是等腰直角三角形的点不存在.故选:B.8、A【解析】利用导数判断函数单调递增,然后进行求解.【详解】对函数进行求导:,因为,,所以,因为,所以f(x)是奇函数,所以在R上单调递增,又因为,所以的解集为.故选:A9、D【解析】由复数除法求得后可得其共轭复数【详解】由题意,∴故选:D10、C【解析】由韦达定理可得方程的两根之积为,从而可知直线、的斜率之积为,进而可判断两直线的位置关系【详解】设方程的两根为、,则直线、的斜率,故与相交但不垂直故选:C11、A【解析】先求,然后求.【详解】,,.故选:A12、B【解析】由是以P为直角直角三角形得到,再利用双曲线的定义得到,联立即可得到,代入中计算即可.【详解】由已知,不妨设,则,因为,所以点在以为直径的圆上,即是以P为直角顶点的直角三角形,故,即,又,所以,解得,所以故选:B【点晴】本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13、(Ⅰ);(Ⅱ)或【解析】(Ⅰ)求出点的坐标,设圆的半径为,圆上的点到轴的最小距离为1求得的值,由此可得出圆的标准方程;(Ⅱ)对切线的斜率是否存在进行分类讨论,当切线的斜率不存在时,可得切线方程为,验证即可;当切线的斜率存在时,可设所求切线的方程为,利用圆心到切线的距离等于圆的半径可求得的值,综合可得出所求切线的方程.【详解】(Ⅰ)联立方程组,解得,即点设圆的半径为,由于圆上的点到轴的最小距离为,则,所以,故圆的标准方程为;(Ⅱ)若切线的斜率不存在,则所求切线的方程为,圆心到直线的距离为,不合乎题意;若切线的斜率存在,可设切线的方程为,即,圆的圆心坐标为,半径为,由题意可得,整理得,解得或故所求切线方程为或【点睛】本题考查圆的标准方程的求解,同时也考查了过圆外一点的圆的切线方程的求解,考查计算能力,属于中等题.14、【解析】根据椭圆定义求出其长半轴长,再结合焦点坐标即可计算作答.【详解】因椭圆上一点到两个焦点的距离之和等于,则该椭圆长半轴长,而半焦距,于是得短半轴长b,有,所以的标准方程为.故答案为:15、【解析】根据向量平行求得,由此求得.【详解】由于,所以.故答案为:16、【解析】利用导数求出函数的最小值,结合函数的图象列式可求出结果.【详解】,当时,,在上为增函数,最多只有一个零点,不符合题意;当时,令,得,令,得,所以在上为减函数,在上为增函数,所以在时取得极小值为,也是最小值,因为当趋近于正负无穷时,都是趋近于正无穷,所以要使有两个零点,只要,即就可以了.所以的范围是故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,(2)【解析】(1)利用等差数列的定义可证是等差数列,利用等差数列的通项公式可求.(2)利用错位相减法可求.【小问1详解】因为,是以为首项,为公差的等差数列,,.【小问2详解】,,,.18、(1)(2)1【解析】(1)根据椭圆的上顶点与椭圆的左右顶点连线的斜率之积为-,由求解;(2)根据点M(,)在椭圆C上,顶点,再由,求得椭圆方程,由,结合,得到,设直线方程为,与椭圆方程联立,求得点P的坐标,再由,求得Q的坐标,代入求解.【小问1详解】解:设椭圆C:的上顶点为,左顶点为,右顶点为,因为椭圆的上顶点与椭圆的左右顶点连线的斜率之积为-,所以,即,又所以,解得;【小问2详解】因为点M(,)在椭圆C上,所以,又,解得,所以椭圆方程为,,则,因为,所以,又,所以,则,设,则,当时,则,不合题意;当时,设直线方程为,与题意方程联立,消去y得:则,所以,则,因为,由,得,因为,所以,化简得,因,则.19、(1);(2).【解析】(1)分析可知直线的方程为,将直线的方程与抛物线方程联立,求出点的坐标,利用抛物线的定义可求得;(2)利用点差法可求得直线的斜率,利用点斜式可得出直线的方程.【小问1详解】解:设点、,则直线的倾斜角为,易知点,直线的方程为,联立,可得,由题意可知,则,,因此,.【小问2详解】解:设、,若轴,则线段的中点在轴上,不合乎题意,所以直线的斜率存在,因为、在抛物线上,则,两式相减得,又因为为的中点,则,所以,直线的斜率为,此时,直线的方程为,即.20、(1)见解析(2)见解析(3)【解析】(1)利用勾股定理证得,证明平面,根据线面垂直的性质证得,再根据线面垂直的判定定理即可得证;(2)取的中点,连接,可得为的中点,证明,四边形是平行四边形,可得,再根据面面平行的判定定理即可得证;(3)设,由(1)(2)可得即为平面与平面的距离,求出的长度,即可得解.【小问1详解】证明:在直三棱柱中,为的中点,,,故,因为,所以,又平面,平面,所以,又因,,所以平面,又平面,所以,又,所以平面;【小问2详解】证明:取的中点,连接,则为的中点,因为,,分别为,,的中点,所以,且,所以四边形是平行四边形,所以,所以,又平面,平面,所以平面,因为,所以,又平面,平面,所以平面,又因,平面,平面,所以平面平面;【小问3详解】设,因为平面,平面平面,所以平面,所以即为平面与平面的距离,因平面,所以,,所以,即平面与平面的距离为.21、(1);(2),a的取值范围为.【解析】(1)先连结,由为等边三角形,得到,,;再由椭圆定义,即可求出结果;(2)先由题意得到,满足条件的点存在,当且仅当,,,根据三个式子联立,结合题中条件,即可求出结果.【详解】(1)连结,由等边三角形可知:在中,,,,于是,故椭圆C的离心率为;(2)由题意可知,满足条件的点存在,当且仅当,,,即①②③由②③以及得,又由①知,故;由②③得,所以,从而,故;当,时,存在满足条件的点.故,a的取值范围为.【点睛】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.22、(1)(2)证明见解析【解析】(1)由椭圆定义可得到,再利用斜率公式及直线的斜率之积等于,列出方程,化简对比系数可得;(2)分直线l的斜率为0和不为0两种情况讨论,利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论