广东广州市2025届数学高一上期末考试试题含解析_第1页
广东广州市2025届数学高一上期末考试试题含解析_第2页
广东广州市2025届数学高一上期末考试试题含解析_第3页
广东广州市2025届数学高一上期末考试试题含解析_第4页
广东广州市2025届数学高一上期末考试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东广州市2025届数学高一上期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知正方体,则异面直线与所成的角的余弦值为A. B.C. D.2.将函数的图像先向右平移个单位,再把所得函数图像横坐标变为原来的,纵坐标不变,得到函数的图像,若函数在上没有零点,则的取值范围是()A. B.C. D.3.某同学用二分法求方程的近似解,该同学已经知道该方程的一个零点在之间,他用二分法操作了7次得到了方程的近似解,那么该近似解的精确度应该为A.0.1 B.0.01C.0.001 D.0.00014.关于,,下列叙述正确的是()A.若,则是的整数倍B.函数的图象关于点对称C.函数的图象关于直线对称D.函数在区间上为增函数.5.已知集合,则()A. B.C. D.6.已知函数,则()A.3 B.2C.1 D.07.函数在区间单调递减,在区间上有零点,则的取值范围是A. B.C. D.8.设集合,,则()A. B.C. D.9.已知一扇形的周长为28,则该扇形面积的最大值为()A.36 B.42C.49 D.5610.已知平面向量,,若,则实数值为()A.0 B.-3C.1 D.-1二、填空题:本大题共6小题,每小题5分,共30分。11.函数是偶函数,且它的值域为,则__________12.函数函数的定义域为________________13.筒车亦称为“水转筒车”,一种以流水为动力,取水灌田的工具,筒车发明于隋而盛于唐,距今已有1000多年的历史.如图,假设在水流量稳定的情况下,一个半径为3米的筒车按逆时针方向做每6分钟转一圈的匀速圆周运动,筒车的轴心O距离水面BC的高度为1.5米,设筒车上的某个盛水筒P的切始位置为点D(水面与筒车右侧的交点),从此处开始计时,t分钟时,该盛水筒距水面距离为,则___________14.如图,在三棱锥中,已知,,,,则三棱锥的体积的最大值是________.15.实数271316.已知是偶函数,且方程有五个解,则这五个解之和为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数且点(4,2)在函数f(x)的图象上.(1)求函数f(x)的解析式,并在图中的直角坐标系中画出函数f(x)的图象;(2)求不等式f(x)<1的解集;(3)若方程f(x)-2m=0有两个不相等的实数根,求实数m的取值范围18.某地区今年1月,2月,3月患某种传染病的人数分别为52,54,58为了预测以后各月的患病人数,甲选择的了模型,乙选择了模型,其中y为患病人数,x为月份数,a,b,c,p,q,r都是常数,结果4月,5月,6月份的患病人数分别为66,82,115,1你认为谁选择的模型较好?需说明理由2至少要经过多少个月患该传染病的人数将会超过2000人?试用你选择的较好模型解决上述问题19.已知函数.(1)化简;(2)若,求下列表达式的值:①;②.20.已知.(1)若关于x的不等式的解集为区间,求a的值;(2)设,解关于x的不等式.21.如图所示,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a,PA=PC=a,(1)求证:PD⊥平面ABCD;(2)求证:平面PAC⊥平面PBD;(3)求二面角P-AC-D的正切值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】将平移到,则异面直线与所成的角等于,连接在根据余弦定理易得【详解】设正方体边长为1,将平移到,则异面直线与所成的角等于,连接.则,所以为等边三角形,所以故选A【点睛】此题考查立体几何正方体异面直线问题,异面直线求夹角,将其中一条直线平移到与另外一条直线相交形成的夹角即为异面直线夹角,属于简单题目2、C【解析】先由图象的变换求出的解析式,再由定义域求出的范围,再利用正弦函数的图象和性质,求得的取值范围.【详解】函数的图象先向右平移个单位长度,可得的图象,再将图象上每个点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,∴周期,由,则,若函数在上没有零点,结合正弦函数的图象观察则∴,,解得,又,解得,当时,解得,当时,,可得,.故选:C【点睛】本题考查正弦型的图象变换及零点问题,此类问题通常采用数形结合思想,构建不等关系式求解,属于较难题.第II卷3、B【解析】令,则用计算器作出的对应值表:由表格数据知,用二分法操作次可将作为得到方程的近似解,,,近似解的精确度应该为0.01,故选B.4、B【解析】由题意利用余弦函数的图象和性质,逐一判断各个结论是否正确,从而得出结论.【详解】对于A,的周期为,若,则是的整数倍,故A错误;对于B,当时,,则函数的图象关于点中心对称,B正确;对于C,当时,,不是函数最值,函数的图象不关于直线对称,C错误;对于D,,,则不单调,D错误故选:B.5、D【解析】求出集合A,再求A与B的交集即可.【详解】∵,∴.故选:D.6、B【解析】先求值,再计算即可.【详解】,,故选:B点睛】本题主要考查了分段函数求函数值,属于基础题.7、C【解析】分析:结合余弦函数的单调减区间,求出零点,再结合零点范围列出不等式详解:当,,又∵,则,即,,由得,,∴,解得,综上.故选C.点睛:余弦函数的单调减区间:,增区间:,零点:,对称轴:,对称中心:,.8、D【解析】解一元二次不等式求出集合A,利用交集定义和运算计算即可【详解】由题意可得,则故选:D9、C【解析】由题意,根据扇形面积公式及二次函数的知识即可求解.【详解】解:设扇形的半径为R,弧长为l,由题意得,则扇形的面积,所以该扇形面积的最大值为49,故选:C.10、C【解析】根据,由求解.【详解】因为向量,,且,所以,解得,故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】展开,由是偶函数得到或,分别讨论和时的值域,确定,的值,求出结果.【详解】解:为偶函数,所以,即或,当时,值域不符合,所以不成立;当时,,若值域为,则,所以.故答案为:.12、(1,3)【解析】函数函数的定义域,满足故答案为(1,3).13、【解析】根据图象及所给条件确定振幅、周期、,再根据时求即可得解.【详解】由题意知,,,,当时,,,即,,所以,故答案为:14、【解析】过作垂直于的平面,交于点,,作,通过三棱锥体积公式可得到,可分析出当最大时所求体积最大,利用椭圆定义可确定最大值,由此求得结果.【详解】过作垂直于的平面,交于点,作,垂足为,,当取最大值时,三棱锥体积取得最大值,由可知:当为中点时最大,则当取最大值时,三棱锥体积取得最大值.又,在以为焦点的椭圆上,此时,,,,三棱锥体积最大值为.故答案为:.【点睛】关键点点睛:本题考查三棱锥体积最值的求解问题,解题关键是能够将所求体积的最值转化为线段长度最值的求解问题,通过确定线段最值得到结果.15、1【解析】直接根据指数幂运算与对数运算求解即可.【详解】解:27故答案为:116、【解析】根据函数的奇偶性和图象变换,得到函数的图象关于对称,进而得出方程其中其中一个解为,另外四个解满足,即可求解.【详解】由题意,函数是偶函数,可函数的图象关于对称,根据函数图象的变换,可得函数的图象关于对称,又由方程有五个解,则其中一个解为,不妨设另外四个解分别为且,则满足,即,所以这五个解之和为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2);(3).【解析】(1)根据点在函数的图象上得到,于是可得解析式,进而可画出函数的图象;(2)将不等式化成不等式组求解可得所求;(3)结合图象得到的取值范围后再求出的范围【详解】(1)∵点在函数图象上,∴,∴∴.画出函数的图象如下图所示(2)不等式等价于或解得,或,所以原不等式的解集为(3)∵方程f(x)-2m=0有两个不相等的实数根,∴函数的图象与函数的图象有两个不同的交点结合图象可得,解得∴实数的取值范围为【点睛】(1)本题考查函数图象的画法和图象的应用,根据解析式画图象时要根据描点法进行求解,画图时要熟练运用常见函数的图象(2)根据方程根的个数(函数零点的个数)求参数的取值时,要注意将问题进行转化两函数图象交点个数的问题,然后画出函数的图象后利用数形结合求解18、(1)应将作为模拟函数,理由见解析;(2)个月.【解析】根据前3个月的数据求出两个函数模型的解析式,再计算4,5,6月的数据,与真实值比较得出结论;由(1),列不等式求解,即可得出结论【详解】由题意,把,2,3代入得:,解得,,,所以,所以,,;把,2,3代入,得:,解得,,,所以,所以,,;、、更接近真实值,应将作为模拟函数令,解得,至少经过11个月患该传染病的人数将会超过2000人【点睛】本题主要考查了函数的实际应用问题,以及指数与对数的运算性质的应用,其中解答中认真审题,正确理解题意,求解函数的解析式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.19、(1)(2)①,②;【解析】(1)直接利用诱导公式化简即可;(2)依题意可得,再根据同角三角函数的基本关系将弦化切,再代入计算可得;【小问1详解】解:因为,所以;【小问2详解】解:由,得①②20、(1);(2)答案见解析.【解析】(1)先将分式不等式转化成一元二次不等式,再根据解集与根的关系,即得结果;(2)先将分式不等式转化成一元二次不等式,再结合根的大小对a进行分类讨论求解集即可.【详解】(1)由,得,即,即,等价于,由题意得,则;(2)即,即.①当时,不等式即为,则,此时原不等式解集为;②当时,不等式即为.1°若,则,所以,此时原不等式解集为;2°若,则,不等式为,x不存在,此时原不等式解集为;3°若,则,所以,此时原不等式解集为.【点睛】分式不等式的解法:等价于;等价于;等价于或;等价于或.21、(1)见解析(2)见解析(3)【解析】(1)证明:∵PD=a,DC=a,PC=a,∴PC2=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论