江苏省南通市海门市海门中学2025届高二数学第一学期期末调研模拟试题含解析_第1页
江苏省南通市海门市海门中学2025届高二数学第一学期期末调研模拟试题含解析_第2页
江苏省南通市海门市海门中学2025届高二数学第一学期期末调研模拟试题含解析_第3页
江苏省南通市海门市海门中学2025届高二数学第一学期期末调研模拟试题含解析_第4页
江苏省南通市海门市海门中学2025届高二数学第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南通市海门市海门中学2025届高二数学第一学期期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.方程所表示的曲线为()A.射线 B.直线C.射线或直线 D.无法确定2.执行如图所示的程序框图,若输出的,则输人的()A. B.或C. D.或3.已知各项都为正数的等比数列,其公比为q,前n项和为,满足,且是与的等差中项,则下列选项正确的是()A. B.C D.4.设函数,则下列函数中为奇函数的是()A. B.C. D.5.已知等差数列满足,则等于()A. B.C. D.6.当我们停放自行车时,只要将自行车旁的撑脚放下,自行车就稳了,这用到了()A.三点确定一平面 B.不共线三点确定一平面C.两条相交直线确定一平面 D.两条平行直线确定一平面7.已知函数,.若存在三个零点,则实数的取值范围是()A. B.C. D.8.函数y=的最大值为Ae-1 B.eC.e2 D.9.直线x-y+1=0被椭圆+y2=1所截得的弦长|AB|等于()A. B.C. D.10.抛掷一枚质地均匀的骰子两次,记{两次的点数均为奇数},{两次的点数之和为8},则()A. B.C. D.11.已知,则下列说法错误的是()A.若,分别是直线,的方向向量,则直线,所成的角的余弦值是B.若,分别是直线l的方向向量与平面的法向量,则直线l与平面所成的角的正弦值是C.若,分别是平面,的法向量,则平面,所成的角的余弦值是D.若,分别是直线l的方向向量与平面的法向量,则直线l与平面所成的角的正弦值是12.已知双曲线的两个焦点为,,是此双曲线上的一点,且满足,,则该双曲线的方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.一个六棱锥的体积为,其底面是边长为的正六边形,侧棱长都相等,则该六棱锥的侧面积为.14.已知、双曲线的左、右焦点,A、B为双曲线上关于原点对称的两点,且满足,,则双曲线的离心率为___________.15.已知函数.(1)若的解集为,求a,b的值;(2)若,a,b均正实数,求的最小值;(3)若,当时,若不等式恒成立,求实数b的值.16.已知,,若x,a,b,y成等比数列,x,c,d,y成等差数列,则的最小值为_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前n项和为,,且(1)求数列的通项公式;(2)令,记数列的前n项和为,求证:18.(12分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和(Ⅰ)求k的值及f(x)的表达式(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值19.(12分)证明:是无理数.(我们知道任意一个有理数都可以写成形如(m,n互质,)的形式)20.(12分)锐角中满足,其中分别为内角的对边(I)求角;(II)若,求的取值范围21.(12分)已知函数(1)求的单调区间;(2)若,求的最大值与最小值22.(10分)已知两圆x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0(1)m取何值时两圆外切?(2)m取何值时两圆内切?(3)当m=45时,求两圆公共弦所在直线的方程和公共弦的长

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】将方程化为或,由此可得所求曲线.【详解】由得:或,即或,方程所表示的曲线为射线或直线.故选:C.2、A【解析】根据题意可知该程序框图显示的算法函数为,分和两种情况讨论即可得解.【详解】解:该程序框图显示得算法函数为,由,当时,,方程无解;当时,,解得,综上,若输出的,则输入的.故选:A.3、D【解析】根据题意求得,即可判断AB,再根据等比数列的通项公式即可判断C;再根据等比数列前项和公式即可判断D.【详解】解:因为各项都为正数的等比数列,,所以,又因是与的等差中项,所以,即,解得或(舍去),故B错误;所以,故A错误;所以,故C错误;所以,故D正确.故选:D.4、A【解析】求出函数图象的对称中心,结合函数图象平移变换可得结果.【详解】因为,所以,,所以,函数图象的对称中心为,将函数的图象向右平移个单位,再将所得图象向下平移个单位长度,可得到奇函数的图象,即函数为奇函数.故选:A5、A【解析】利用等差中项求出的值,进而可求得的值.【详解】因为得,因此,.故选:A.6、B【解析】自行车前后轮与撑脚分别接触地面,使得自行车稳定,此时自行车与地面的三个接触点不在同一条线上.【详解】自行车前后轮与撑脚分别接触地面,此时三个接触点不在同一条线上,所以可以确定一个平面,即地面,从而使得自行车稳定.故选B项.【点睛】本题考查不共线的三个点确定一个平面,属于简单题.7、B【解析】根据题意,当时,有一个零点,进而将问题转化为当时,有两个实数根,再研究函数即可得答案.【详解】解:因为存在三个零点,所以方程有三个实数根,因为当时,由得,解得,有且只有一个实数根,所以当时,有两个实数根,即有两个实数根,所以令,则,所以当时,,单调递增,当时,,单调递减,因为,,,所以的图象如图所示,所以有两个实数根,则故选:B8、A【解析】,所以函数在上递增,在上递减,所以函数的最大值为时,y==故选A点睛:研究函数最值主要根据导数研究函数的单调性,找到最值,分式求导公式要记熟9、A【解析】联立方程组,求出交点坐标,利用两点间的距离公式求距离.【详解】由得交点为(0,1),,则|AB|==.故选:A.10、B【解析】利用条件概率公式进行求解.【详解】,其中表示:两次点数均为奇数,且两次点数之和为8,共有两种情况,即,故,而,所以,故选:B11、D【解析】利用空间角的意义结合空间向量求空间角的方法逐一分析各选项即可判断作答.【详解】对于A,因分别是直线的方向向量,且,直线所成的角为,则,A正确;对于B,D,因分别是直线l的方向向量与平面的法向量,且,直线l与平面所成的角为,则有,B正确,D错误;对于C,因分别是平面的法向量,且,平面所成的角为,则不大于,,C正确.故选:D12、A【解析】由,可得进一步求出,由此得到,则该双曲线的方程可求【详解】,即,则.即,则该双曲线的方程是:故选:A【点睛】方法点睛:求圆锥曲线的方程,常用待定系数法,先定式(根据已知确定焦点所在的坐标轴,设出曲线的方程),再定式(根据已知建立方程组解方程组得解).二、填空题:本题共4小题,每小题5分,共20分。13、【解析】判断棱锥是正六棱锥,利用体积求出棱锥的高,然后求出斜高,即可求解侧面积∵一个六棱锥的体积为,其底面是边长为2的正六边形,侧棱长都相等,∴棱锥是正六棱锥,设棱锥的高为h,则棱锥斜高为该六棱锥的侧面积为考点:棱柱、棱锥、棱台的体积14、【解析】可得四边形为矩形,运用三角函数的定义可得,,由双曲线的定义和矩形的性质,可得,由离心率公式求解即可.【详解】、为双曲线的左、右焦点,可得四边形为矩形,在中,,∴,在中,,可得,,∴,∴,∵,∴,∴,故答案为:.【点睛】关键点点睛:得出四边形为矩形,利用双曲线的定义解决焦点三角形问题.15、(1),;(2);(3)【解析】(1)根据韦达定理解求得答案;(2)根据题意,,进而化简,然后结合基本不等式解得答案;(3)讨论,和x=2三种情况,进而分参转化为求函数的最值问题,最后求得答案.【小问1详解】由已知可知方程的两个根为,2,由韦达定理得,,故,.【小问2详解】由题意得,,所以,当且仅当时取等号.【小问3详解】若,,不等式恒成立.当时,,此时,即对于恒成立,单调递减,此时,,所以;当时,,此时,即即对于恒成立,在单调递减,此时,所以;当x=2时,.综上所述:.16、4【解析】根据等差数列和等比数列性质把用表示,然后由基本不等式得最小值【详解】由题意,,所以,当且仅当时等号成立故答案为:4三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)依题意可得,即可得到是以为首项,为公比的等比数列,从而求出数列的通项公式;(2)由(1)可得,利用错位相减法求和,即可证明;【小问1详解】解:因为,,所以,所以是以为首项,为公比的等比数列,所以,所以;【小问2详解】解:由(1)可知,所以①,所以②;①②得所以;18、,因此.,当隔热层修建厚时,总费用达到最小值70万元【解析】解:(Ⅰ)设隔热层厚度为,由题设,每年能源消耗费用为.再由,得,因此.而建造费用为最后得隔热层建造费用与20年的能源消耗费用之和为(Ⅱ),令,即.解得,(舍去)当时,,当时,,故是的最小值点,对应的最小值为当隔热层修建厚时,总费用达到最小值为70万元19、详见解析【解析】利用反证法,即可推得矛盾.【详解】假设有理数,则,则,为整数,的尾数只能是0,1,4,5,6,9,的尾数只能是0,1,4,5,6,9,则的尾数是0,2,8,由得,尾数为0,则的尾数是0,而的尾数为0或5,这与为最简分数,的最大公约数是1,相矛盾,所以假设不正确,是无理数.20、(I);(II)【解析】(I)由正弦定理边角互化并整理得,进而由余弦定理得;(II)正弦定理得,故,再根据三角恒等变换得,由于锐角中,,进而根据三角函数性质求得答案.【详解】解:(I)由正弦定理得所以,即,所以,因为锐角中,,所以;(II)因为,,所以所以,因为,所以,所以,所以,所以21、(1)单调递增区间是和,单调递减是;(2)函数的最大值是,函数的最小值是.【解析】(1)利用导数和函数单调性关系,求函数的单调区间;(2)利用函数的单调性,列表求函数的最值.【小问1详解】,当,解得:或,所以函数的单调递增区间是和,当,解得:,所以函数的单调递减区间是,所以函数的单调递增区间是和,单调递减是;【小问2详解】由(1)可得下表4单调递增单调递减单调递增所以函数的最大值是,函数的最小值是22、(1)(2)(3)直线方程为4x+3y-23=0,弦长为【解析】(1)先把两个圆的方程化为标准形式,求出圆心和半径,再根据两圆的圆心距等于两圆的半径之和,求得m的值;(2)由两圆的圆心距等于两圆的半径之差为,求得m的值.(3)当m=45时,把两个圆的方程相减,可得公共弦所在的直线方程.求出第一个圆的圆心(1,3)到公共弦所在的直线的距离d,再利用弦长公式求得弦长试题解析:(1)由已知可得两个圆的方程分别为(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=61-m,两圆的圆心距d==5,两圆的半径之和为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论