2025届贵州省高二数学第一学期期末复习检测试题含解析_第1页
2025届贵州省高二数学第一学期期末复习检测试题含解析_第2页
2025届贵州省高二数学第一学期期末复习检测试题含解析_第3页
2025届贵州省高二数学第一学期期末复习检测试题含解析_第4页
2025届贵州省高二数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届贵州省高二数学第一学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的导函数的图象如图所示,则下列说法正确的是()A.函数在上单调递增B.函数的递减区间为C.函数在处取得极大值D.函数在处取得极小值2.用反证法证明命题“a,b∈N,如果ab可以被5整除,那么a,b至少有1个能被5整除.”假设内容是()A.a,b都能被5整除 B.a,b都不能被5整除C.a不能被5整除 D.a,b有1个不能被5整除3.南宋数学家杨辉在《详解九章算法》中讨论过高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.例如“百层球堆垛”:第一层有1个球,第二层有3个球,第三层有6个球,第四层有10个球,第五层有15个球,…,各层球数之差:,,,,…即2,3,4,5,…是等差数列.现有一个高阶等差数列,其前6项分别为1,3,6,12,23,41,则该数列的第8项为()A.51 B.68C.106 D.1574.若,则()A. B.C. D.5.已知△的顶点B,C在椭圆上,顶点A是椭圆的一个焦点,且椭圆的另一个焦点在BC边上,则△的周长是()A. B.C.8 D.166.已知椭圆的左右焦点分别为,,过C上的P作y轴的垂线,垂足为Q,若四边形是菱形,则C的离心率为()A. B.C. D.7.用这3个数组成没有重复数字的三位数,则事件“这个三位数是偶数”与事件“这个三位数大于342”()A.是互斥但不对立事件 B.不是互斥事件C.是对立事件 D.是不可能事件8.某学校随机抽取了部分学生,对他们每周使用手机的时间进行统计,得到如下的频率分布直方图.则下列说法:①;②若抽取100人,则平均用时13.75小时;③若从每周使用时间在,,三组内的学生中用分层抽样的方法选取8人进行访谈,则应从使用时间在内的学生中选取的人数为3.其中正确的序号是()A.①② B.①③C.②③ D.①②③9.我们知道,偿还银行贷款时,“等额本金还款法”是一种很常见的还款方式,其本质是将本金平均分配到每一期进行偿还,每一期的还款金额由两部分组成,一部分为每期本金,即贷款本金除以还款期数,另一部分是利息,即贷款本金与已还本金总额的差乘以利率.自主创业的大学生张华向银行贷款的本金为48万元,张华跟银行约定,按照等额本金还款法,每个月还一次款,20年还清,贷款月利率为,设张华第个月的还款金额为元,则()A.2192 B.C. D.10.抛物线上有两个点,焦点,已知,则线段的中点到轴的距离是()A.1 B.C.2 D.11.已知双曲线的右焦点为,以为圆心,以为半径的圆与双曲线的一条渐近线交于,两点,若(为坐标原点),则双曲线的离心率为().A. B.C. D.12.直线的一个方向向量为,则它的斜率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知A,B为x,y正半轴上的动点,且,O为坐标原点,现以为边长在第一象限做正方形,则的最大值为___________.14.若函数在区间上的最大值是,则__________15.已知双曲线M的中心在原点,以坐标轴为对称轴.从以下三个条件中任选两个条件,并根据所选条件求双曲线M的标准方程.①一个焦点坐标为;②经过点;③离心率为.你选择的两个条件是___________,得到的双曲线M的标准方程是___________.16.已知双曲线的左,右焦点分别为,,右焦点到一条渐近线的距离是,则其离心率的值是______;若点P是双曲线C上一点,满足,,则双曲线C的方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点在椭圆上(1)经过点M(1,)作一直线交椭圆于AB两点,若点M为线段AB的中点,求直线的斜率;(2)设椭圆C的上顶点为P,设不经过点P的直线与椭圆C交于C,D两点,且,求证:直线过定点18.(12分)已知为各项均为正数的等比数列,且,(1)求数列的通项公式;(2)令,求数列前n项和19.(12分)已知函数.(Ⅰ)求的单调递减区间;(Ⅱ)若当时,恒成立,求实数a的取值范围.20.(12分)总书记指出:“我们既要绿水青山,也要金山银山.”新能源汽车环保、节能,以电代油,减少排放,既符合我国的国情,也代表了世界汽车产业发展的方向.工业部表示,到2025年中国的汽车总销量将达到3500万辆,并希望新能源汽车至少占总销量的五分之一.江苏某新能源公司年初购入一批新能源汽车充电桩,每台16200元,第一年每台设备的维修保养费用为1100元,以后每年增加400元,每台充电桩每年可给公司收益8100元(1)每台充电桩第几年开始获利?(2)每台充电桩在第几年时,年平均利润最大21.(12分)点与定点的距离和它到直线:的距离的比是常数.(1)求动点的轨迹的方程;(2)点在(1)中轨迹上运动轴,为垂足,点满足,求点轨迹方程.22.(10分)设命题p:实数x满足,其中;命题q:若,且为真,求实数x的取值范围;若是的充分不必要条件,求实数m的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据函数单调性与导数之间的关系及极值的定义结合图像即可得出答案.【详解】解:根据函数的导函数的图象可得,当时,,故函数在和上递减,当时,,故函数在和上递增,所以函数在和处取得极小值,在处取得极大值,故ABD错误,C正确.故选:C.2、B【解析】由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”考点:反证法3、C【解析】对高阶等差数列按其定义逐一进行构造数列,直到出现一般等差数列为止,再根据其递推关系进行求解.【详解】现有一个高阶等差数列,其前6项分别为1,3,6,12,23,41,各项与前一项之差:,,,,,…即2,3,6,11,18,…,,,,,…即1,3,5,7,…是等差数列,所以,故选:C4、D【解析】设,计算出、的值,利用平方差公式可求得结果.【详解】设由已知可得,,因此,.故选:D.5、D【解析】根据椭圆定义求解【详解】由椭圆定义得△的周长是,故选:D.6、C【解析】根据题意求出P点坐标,代入椭圆方程中,可整理得到关于a,c的等式,进一步整理为关于e的方程,解得答案.【详解】如图示:由题意可知,因为四边形是菱形,所以,则,所以P点坐标为,将P点坐标为代入得:,整理得,故,由于,解得,所以,故选:C.7、B【解析】根据题意列举出所有可能性,进而根据各类事件的定义求得答案.【详解】由题意,将2,3,4组成一个没有重复数字的三位数的情况有:{234,243,324,342,423,432},其中偶数有{234,324,342,432},大于342的有{423,432}.所以两个事件不是互斥事件,也不是对立事件.故选:B.8、B【解析】根据频率分布直方图中小矩形的面积和为1可求出,再求出频率分布直方图的平均值,即为抽取100人的平均值的估计值,再利用分层抽样可确定出使用时间在内的学生中选取的人数为3.【详解】,故①正确;根据频率分布直方图可估计出平均值为,所以估计抽取100人的平均用时13.75小时,②的说法太绝对,故②错误;每周使用时间在,,三组内的学生的比例为,用分层抽样的方法选取8人进行访谈,则应从使用时间在内的学生中选取的人数为,故③正确.故选:B.9、D【解析】计算出每月应还的本金数,再计算第n个月已还多少本金,由此可计算出个月的还款金额.【详解】由题意可知:每月还本金为2000元,设张华第个月的还款金额为元,则,故选:D10、B【解析】利用抛物线的定义,将抛物线上的点到焦点的距离转化为点到准线的距离,即可求出线段中点的横坐标,即得到答案.【详解】由已知可得抛物线的准线方程为,设点的坐标分别为和,由抛物线的定义得,即,线段中点的横坐标为,故线段的中点到轴的距离是.故选:.11、A【解析】设双曲线的一条渐近线方程为,为的中点,可得,由,可知为的三等分点,用两种方式表示,可得关于的方程组,结合即可得到双曲线的离心率.【详解】设双曲线的一条渐近线方程为,为的中点,可得,由到渐近线的距离为,所以,又,所以,因为,所以,整理可得:,即,所以,可得,所以,所以双曲线的离心率为,故选:A.12、A【解析】根据的方向向量求得斜率.【详解】且是直线的方向向量,.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、32【解析】建立平面直角坐标系,设出角度和边长,表达出点坐标,进而表达出,利用三角函数换元,求出最大值.【详解】如图,过点D作DE⊥x轴于点E,过点C作CF⊥y轴于点F,设,(),则由三角形全等可知,设,,则,则,,则,令,,则,当时,取得最大值,最大值为32故答案为:3214、0【解析】由函数,又由,则,根据二次函数的性质,即可求解函数的最大值,得到答案.【详解】由函数,因为,所以,当时,则,所以.【点睛】本题主要考查了余弦函数的性质,以及二次函数的图象与性质,其中解答中根据余弦函数,转化为关于的二次函数,利用二次函数的图象与性质是解答的关键,着重考查了转化思想,以及推理与计算能力,属于基础题.15、①.①②或①③或②③②.或或【解析】选①②,根据焦点坐标及顶点坐标直接求解,选①③,根据焦点坐标及离心率求出即可得解,选②③,可由顶点坐标及离心率得出,即可求解.【详解】选①②,由题意则,,,双曲线的标准方程为,故答案为:①②;,选①③,由题意,,,,双曲线的标准方程为,选②③,由题意知,,,双曲线的标准方程为.故答案为:①②;或①③;或②③;.16、①.##1.5②.【解析】求得焦点到渐近线的距离可得,计算即可求得离心率,由双曲线的定义可求得,计算即可得出结果.【详解】双曲线的渐近线方程为,即,焦点到渐近线的距离为,又,,,,.双曲线上任意一点到两焦点距离之差的绝对值为,即,,即,解得:,由,解得:,.双曲线C的方程为.故答案为:;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)设椭圆的方程为代入点的坐标求出椭圆的方程,再利用点差法求解;(2)由题得直线的斜率存在,设直线的方程为,联立直线和椭圆的方程得韦达定理,根据和韦达定理得到,即得证.【小问1详解】解:由题设椭圆的方程为因为椭圆经过点,所以所以椭圆的方程为.设,所以,所以,由题得,所以,所以,所以,所以直线的斜率为.【小问2详解】解:由题得当直线的斜率不存在时,不符合题意;当直线的斜率存在时,设直线的方程为,联立方程组y=kx+nx24所以,解得①,设,,,,则②,因为,则,,,又,,所以③,由②③可得(舍或满足条件①,此时直线的方程为,故直线过定点18、(1)(2)【解析】(1)利用基本量法,求出首项和公比,即可求解.(2)利用错位相减法,即可求解.【小问1详解】设等比数列公比为【小问2详解】19、(Ⅰ)单调递减区间为;(Ⅱ).【解析】(Ⅰ)求函数的导函数,求的区间即为所求减区间;(Ⅱ)化简不等式,变形为,即求,令,求的导函数判断的单调性求出最小值,可求出的范围.【详解】(Ⅰ)由题可知.令,得,从而,∴的单调递减区间为.(Ⅱ)由可得,即当时,恒成立.设,则.令,则当时,.∴当时,单调递增,,则当时,,单调递减;当时,,单调递增.∴,∴.【点睛】思路点睛:在函数中,恒成立问题,可选择参变分离的方法,分离出参数转化为或,转化为求函数的最值求出的范围.20、(1)公司从第3年开始获利;(2)第9年时每台充电桩年平均利润最大3600元【解析】(1)判断已知条件是等差数列,然后求解利润的表达式,推出表达式求解n即可(2)利用基本不等式求解最大值即可【详解】(1)每年的维修保养费用是以1100为首项,400为公差的等差数列,设第n年时累计利润为f(n),f(n)=8100n-[1100+1500+…+(400n+700)]-16200=8100n-n(200n+900)-16200=-200n2+7200n-16200=-200(n2-36n+81),开始获利即f(n)>0,∴-200(n2-36n+81)>0,即n2-36n+81<0,解得,所以公司从第3年开始获利;(2)每台充电桩年平均利润为当且仅当,即n=9时,等号成立即在第9年时每台充电桩年平均利润最大3600元【点睛】本题考查数列与函数的实际应用,基本不等式的应用,考查转化思想以及计算能力,是中档题21、(1);(2)【解析】(1)根据题意用表示出与,再代入,再化简即可得出答案。(2)设,利用表示出点,再将点代入椭圆,化简即可得出答案。【详解】(1)由题意知,所以化简得:(2)设,因为,则将代入椭圆得化简得【点睛】本题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论