2025届广东省岭南师院附中东方实验学校高二上数学期末监测试题含解析_第1页
2025届广东省岭南师院附中东方实验学校高二上数学期末监测试题含解析_第2页
2025届广东省岭南师院附中东方实验学校高二上数学期末监测试题含解析_第3页
2025届广东省岭南师院附中东方实验学校高二上数学期末监测试题含解析_第4页
2025届广东省岭南师院附中东方实验学校高二上数学期末监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广东省岭南师院附中东方实验学校高二上数学期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过双曲线Ω:(a>0,b>0)右焦点F作x轴的垂线,与Ω在第一象限的交点为M,且直线AM的斜率大于2,其中A为Ω的左顶点,则Ω的离心率的取值范围为()A.(1,3) B.(3,+∞)C.(1,) D.(,+∞)2.设函数在定义域内可导,的图象如图所示,则导函数的图象可能为()A. B.C. D.3.江西省重点中学协作体于2020年进行了一次校际数学竞赛,共有100名同学参赛,经过评判,这100名参赛者的得分都在之间,其得分的频率分布直方图如图,则下列结论错误的是()A.得分在之间的共有40人B.从这100名参赛者中随机选取1人,其得分在的概率为0.5C.这100名参赛者得分的中位数为65D.可求得4.点A是曲线上任意一点,则点A到直线的最小距离为()A. B.C. D.5.下列命题为真命题的是()A.若,则 B.若,则C.若,则 D.若,则6.如图,正三棱柱中,,则与平面所成角的正弦值等于()A. B.C. D.7.将的展开式按x的降幂排列,第二项不大于第三项,若,且,则实数x的取值范围是()A. B.C. D.8.空气质量指数大小分为五级指数越大说明污染的情况越严重,对人体危害越大,指数范围在:,,,,分别对应“优”、“良”、“轻中度污染”、“中度重污染”、“重污染”五个等级,如图是某市连续14天的空气质量指数趋势图,下面说法错误的是().A.这14天中有4天空气质量指数为“良”B.从2日到5日空气质量越来越差C.这14天中空气质量的中位数是103D.连续三天中空气质量指数方差最小是9日到11日9.已知数列的通项公式为,则()A.12 B.14C.16 D.1810.圆与圆的位置关系为()A.外切 B.内切C.相交 D.相离11.过点且垂直于直线的直线方程为()A. B.C. D.12.设为抛物线焦点,直线,点为上任意一点,过点作于,则()A.3 B.4C.2 D.不能确定二、填空题:本题共4小题,每小题5分,共20分。13.若关于的不等式恒成立,则实数的取值范围是______.14.数学家华罗庚说:“数缺形时少直观,形少数时难入微”,事实上,很多代数问题可以转化为几何问题加以解决.例如:与相关的代数问题,可以转化为点与点之间的距离的几何问题.结合上述观点:对于函数,的最小值为______15.椭圆的右焦点是,两点是椭圆的左顶点和上顶点,若△是直角三角形,则椭圆的离心率是________.16.已知双曲线的左,右焦点分别为,,过右焦点且倾斜角为直线l与该双曲线交于M,N两点(点M位于第一象限),的内切圆半径为,的内切圆半径为,则为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知各项均为正数的等比数列{}的前4项和为15,且.(1)求{}的通项公式;(2)若,记数列{}前n项和为,求.18.(12分)已知抛物线上的点到焦点的距离为6(1)求抛物线的方程;(2)设为抛物线的焦点,直线与抛物线交于,两点,求的面积19.(12分)已知抛物线的焦点到准线的距离为,过点的直线与抛物线只有一个公共点.(1)求抛物线的方程;(2)求直线的方程.20.(12分)已知数列满足(1)证明数列是等比数列,并求数列的通项公式;(2)令,求数列的前项和21.(12分)为了了解高二段1000名学生一周课外活动情况,随机抽取了若干学生的一周课外活动时间,时间全部介于10分钟与110分钟之间,将课外活动时间按如下方式分成五组:第一组,第二组,…,第五组.按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右前3个组的频率之比为3∶8∶19,且第二组的频数为8(1)求第一组数据的频率并计算调查中随机抽取了多少名学生的一周课外活动时间;(2)求这组数据的平均数22.(10分)已知抛物线的焦点为F,点在抛物线上.(1)求抛物线的标准方程;(2)过点的直线交抛物钱C于A,B两点,O为坐标原点,记直线OA,OB的斜率分别,,求证:为定值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求点A和M的坐标,进而表示斜率,可得,整理得b2>2ac+2a2,从而可解得离心率的范围.【详解】F(c,0),设M(c,yM),(yM>0)代入可解得yM=,A(-a,0),由于kAM>2,即,整理得b2>2ac+2a2,又b2=c2-a2,∴c2-a2>2ac+2a2,即c2-2ac-3a2>0,∴e2-2e-3>0,e<-1(舍)或e>3.答案:B【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2、D【解析】根据的图象可得的单调性,从而得到在相应范围上的符号和极值点,据此可判断的图象.【详解】由的图象可知,在上为增函数,且在上存在正数,使得在上为增函数,在为减函数,故在有两个不同的零点,且在这两个零点的附近,有变化,故排除A,B.由在上为增函数可得在上恒成立,故排除C.故选:D.【点睛】本题考查导函数图象的识别,此类问题应根据原函数的单调性来考虑导函数的符号与零点情况,本题属于基础题.3、C【解析】根据给定的频率分布直方图,结合直方图的性质,逐项计算,即可求解.【详解】由频率分布直方图,可得A中,得分在之间共有人,所以A正确;B中,从100名参赛者中随机选取1人,其得分在中的概率为,所以B正确;D中,由频率分布直方图的性质,可得,解得,所以D正确.C中,前2个小矩形面积之和为0.4,前3个小矩形面积之和为0.7,所以中位数在[60,70],这100名参赛者得分的中位数为,所以C不正确;故选:C.4、A【解析】动点在曲线,则找出曲线上某点的斜率与直线的斜率相等的点为距离最小的点,利用导数的几何意义即可【详解】不妨设,定义域为:对求导可得:令解得:(其中舍去)当时,,则此时该点到直线的距离为最小根据点到直线的距离公式可得:解得:故选:A5、D【解析】通过举反列即可得ABC错误,利用不等式性质可判断D【详解】A.当时,,但,故A错;B.当时,,故B错;C.当时,,但,故C错;D.若,则,D正确故选:D6、C【解析】取中点,连接,,证明平面,从而可得为与平面所成角,再利用三角函数计算的正弦值.【详解】取中点,连接,,在正三棱柱中,底面是正三角形,∴,又∵底面,∴,又,∴平面,∴为与平面所成角,由题意,,,在中,.故选:C7、A【解析】按照二项展开式展开表示出第二项第三项,解不等式即可.【详解】由二项展开式,第二项为:,第三项为:,依题意,两边约去得到,即,由知,则,同时约去得到.故选:A.8、C【解析】根据题图分析数据,对选项逐一判断【详解】对于A,14天中有1,3,12,13共4日空气质量指数为“良”,故A正确对于B,从2日到5日空气质量指数越来越高,故空气质量越来越差,故B正确对于C,14个数据中位数为:,故C错误对于D,观察折线图可知D正确故选:C9、D【解析】利用给定的通项公式直接计算即得.【详解】因数列的通项公式为,则有,所以.故选:D10、A【解析】根据两圆半径和、差、圆心距之间的大小关系进行判断即可.【详解】由,该圆的圆心为,半径为.圆圆心为,半径为,因为两圆的圆心距为,两圆的半径和为,所以两圆的半径和等于两圆的圆心距,因此两圆相外切,故选:A11、A【详解】因为所求直线垂直于直线,又直线的斜率为,所以所求直线的斜率,所以直线方程为,即.故选:A【点睛】本题主要考查直线方程的求法,属基础题.12、A【解析】由抛物线方程求出准线方程,由题意可得,由抛物线的定义可得,即可求解.【详解】由可得,准线为,设,由抛物线的定义可得,因为过点作于,可得,所以,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设由题可知,当时,可得适合题意,当时,可求函数的最小值即得,当时不合题意,即得.【详解】设,由题可知,∴,当时,,适合题意,所以,当时,令,则,此时时,,单调递减,,,单调递增,∴,又,∴,∴,即,解得,当时,时,,,故的值有正有负,不合题意;综上,实数的取值范围是.故答案为:.【点睛】关键点点睛:本题考查不等式恒成立求参数的取值范围,设由题可知,当时,利用导数可求函数的最小值,结合,可得,进而通过解,即得.14、【解析】根据题意得,表示点与点与距离之和的最小值,再找对称点求解即可.【详解】函数,表示点与点与距离之和的最小值,则点在轴上,点关于轴的对称点,所以,所以的最小值为:.故答案为:.15、【解析】由题设易知,应用斜率的两点式及椭圆参数关系可得,进而求椭圆离心率.【详解】由题设,,,,又△是直角三角形,显然,所以,可得,则,解得,又,所以.故答案为:.16、##【解析】设,,,利用双曲线的定义可得,作出图形,结合图形分析,可知与直线的倾斜角相等,利用直角三角形中的边角关系,即求.【详解】设的内切圆为圆,与三边的切点分别为,如图所示,设,,,设的内切圆为圆,由双曲线的定义可得,得,由此可知,在中,轴于点,同理可得轴于点,所以轴,过圆心作的垂线,垂足为,因为,所以,∴,即∴,即故答案为:.【点睛】关键点点睛,得到是关键,说明轴,同时直线的倾斜角与大小相等,计算即得.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设正项的等比数列的公比为,根据题意列出方程组,求得的值,即可求得数列的通项公式;(2)由,结合乘公比错位相减求和,即可求解.小问1详解】解:设正项的等比数列的公比为,显然不为1,因为等比数列前4项和为且,可得,解得,所以数列的通项公式为.【小问2详解】解:由,所以,可得,两式相减得,所以.18、(1)(2)【解析】(1)根据焦半径公式可求,从而可求抛物线的方程.(2)求出的长度后可求的面积.【小问1详解】因为,所以,故抛物线方程为:.【小问2详解】设,且,由可得,故或,故,故,故,而到直线的距离为,故的面积为19、(1);(2)或或.【解析】(1)根据给定条件结合p的几何意义,直接求出p写出方程作答.(2)直线l的斜率存在设出其方程,再与抛物线C的方程联立,再讨论计算,l斜率不存在时验证作答.【小问1详解】因抛物线的焦点到准线的距离为,于是得,所以抛物线的方程为.【小问2详解】当直线的斜率存在时,设直线为,由消去y并整理得:,当时,,点是直线与抛物线唯一公共点,因此,,直线方程为,当时,,此时直线与抛物线相切,直线方程为,当直线的斜率不存在时,y轴与抛物线有唯一公共点,直线方程为,所以直线方程为为或或.20、(1)证明见解析,(2)【解析】(1)根据等比数列的定义证明数列是以为首项,2为公比的等比数列,进而求解得答案;(2)根据错位相减法求和即可.【小问1详解】解:数列满足,∴数列是以为首项,2为公比的等比数列,,即;∴【小问2详解】解:,,,,21、(1)0.06,50名(2)64(分钟)【解析】(1)利用频率和为1可求解频率,再利用频率,频数,总数之间的关系可求解学生人数;(2)平均数:频率分布直方图中每个小长方形的中点乘以对应的长方形面积之和;【小问1详解】设图中从左到右前3个组的频率分别为3x,8x,19x依题意,得所以.所以第一组数据的频率为,设调查中随机抽取了n名学生的课外活动时间,则,得,所以调查中随机抽取了50名学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论