版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
限时练习:40min完成时间:月日天气:寒假作业11二次函数中的存在性及最值问题二次函数中与特殊几何图形有关的存在性问题和最值问题是近年来中考的热点,这类问题的知识覆盖面广,综合性强,题型构思精巧,解题方法灵活,求解时常常要猜想或者假设问题的某种关系或结论存在,再经过分析、归纳、演算、推理找出最后的答案。存在性问题常见的类型有:二次函数中与直角(等腰)三角形、相似(全等)三角形、平行四边形及特殊的平行四边形等。二次函数中最值问题常见类型有:将军饮马、胡不归、阿氏圆、函数最值等。本课时就二次函数中的存在性问题和最值问题进行专项训练,方便同学们熟练掌握。1.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=-且经过A、C两点,与x轴的另一交点为点B.(1)求二次函数y=ax2+bx+c的表达式;(2)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A,M,N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.2.如图,抛物线经过点和,与x轴的另一个交点为B,它的对称轴为直线.(1)求该抛物线的表达式;(2)若点P是y轴右侧抛物线上的一个点,且与的面积相等,求点P的坐标;(3)点Q是该抛物线上的点,过点Q作的垂线,垂足为是上的点.要使以为顶点的三角形与全等,求满足条件的点Q.3.如图,在平面直角坐标系中,抛物线y=ax2+2x+c(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.(1)求抛物线的解析式;(2)抛物线上C,D两点之间的距离是__________;(3)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.4.如图,抛物线经过,两点,点是轴左侧且位于轴下方抛物线上一动点,设其横坐标为.(1)直接写出抛物线的解析式;(2)将线段绕点顺时针旋转得线段(点是点的对应点),求点的坐标,并判断点D是否在抛物线上;(3)过点作轴交直线于点,试探究是否存在点,使是等腰三角形?若存在,求出点的值;若不存在,说明理由.5.二次函数的图象经过点,,与y轴交于点C,点P为第二象限内抛物线上一点,连接、,交于点Q,过点P作轴于点D.(1)求二次函数的表达式;(2)请判断:是否有最大值,如有请求出有最大值时点P的坐标,如没有请说明理由.6.已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,C为抛物线的顶点,抛物线的对称轴交x轴于点D,连接BC,且tan∠CBD,如图所示.(1)求抛物线的解析式;(2)设P是抛物线的对称轴上的一个动点.①过点P作x轴的平行线交线段BC于点E,过点E作EF⊥PE交抛物线于点F,连接FB、FC,求△BCF的面积的最大值;②连接PB,求PC+PB的最小值.7.(2023年青海省西宁市中考真题)如图,在平面直角坐标系中,直线l与x轴交于点,与y轴交于点,抛物线经过点A,B,且对称轴是直线.(1)求直线l的解析式;(2)求抛物线的解析式;(3)点P是直线l下方抛物线上的一动点,过点P作轴,垂足为C,交直线l于点D,过点P作,垂足为M.求的最大值及此时P点的坐标.8.(2023年山东省淄博市中考真题)如图,一条抛物线经过的三个顶点,其中为坐标原点,点,点在第一象限内,对称轴是直线,且的面积为18.(1)求该抛物线对应的函数表达式;(2)求点的坐标;(3)设为线段的中点,为直线上的一个动点,连接,,将沿翻折,点的对应点为.问是否存在点,使得以,,,为顶点的四边形是平行四边形?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由.9.(2023年湖北省黄石市中考真题)如图,在平面直角坐标系中,抛物线与x轴交于两点,与y轴交于点.(1)求此抛物线的解析式;(2)已知抛物线上有一点,其中,若,求的值;(3)若点D,E分别是线段,上的动点,且,求的最小值.10.(2023年江苏省常州市中考真题)如图,二次函数的图像与x轴相交于点,其顶点是C.(1)_______;(2)D是第三象限抛物线上的一点,连接OD,;将原抛物线向左平移,使得平移后的抛物线经过点D,过点作x轴的垂线l.已知在l的左侧,平移前后的两条抛物线都下降,求k的取值范围;(3)将原抛物线平移,平移后的抛物线与原抛物线的对称轴相交于点Q,且其顶点P落在原抛物线上,连接PC、QC、PQ.已知是直角三角形,求点P的坐标.
11.(2023年湖南省娄底市中考真题)如图,抛物线过点、点,交y轴于点C.(1)求b,c的值.(2)点是抛物线上的动点①当取何值时,的面积最大?并求出面积的最大值;②过点P作轴,交于点E,再过点P作轴,交抛物线于点F,连接,问:是否存在点P,使为等腰直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.12.(2023年四川省雅安市中考真题)在平面直角坐标系中,已知抛物线过点,对称轴是直线.(1)求此抛物线的函数表达式及顶点M的坐标;(2)若点B在抛物线上,过点B作x轴的平行线交抛物线于点C、当是等边三角形时,求出此三角形的边长;(3)已知点E在抛物线的对称轴上,点D的坐标为,是否存在点F,使以点A,D,E,F为顶点的四边形为菱形?若存在,请直接写出点F的坐标;若不存在,请说明理由.13.(2023年湖南省湘潭市中考真题)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年人教B版八年级化学上册月考试卷含答案
- 2025年外研版必修2化学上册月考试卷含答案
- 2025年人教版(2024)五年级语文下册月考试卷含答案
- 2025年沪科版高二生物上册月考试卷含答案
- 2025年北师大版七年级历史上册月考试卷含答案
- 2025年上教版七年级历史下册月考试卷
- 2024年茶叶品牌区域销售代理协议版B版
- 2025年外研版三年级起点九年级地理下册月考试卷
- 2024年特定区域独家代理权合作合同版B版
- 2025年人教A新版七年级语文下册阶段测试试卷含答案
- 2024版塑料购销合同范本买卖
- 【高一上】【期末话收获 家校话未来】期末家长会
- GB/T 44890-2024行政许可工作规范
- 有毒有害气体岗位操作规程(3篇)
- 儿童常见呼吸系统疾病免疫调节剂合理使用专家共识2024(全文)
- 《华润集团全面预算管理案例研究》
- 二年级下册加减混合竖式练习360题附答案
- 全国小学语文研究《低年级作文 》精品课件写话教学课件
- 附录常见感叹词及用法
- GB/T 21709.5-2008针灸技术操作规范第5部分:拔罐
- 大三上-诊断学复习重点
评论
0/150
提交评论