版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届辽宁铁岭市清河第二中学高一上数学期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,,的零点分别为则的大小顺序为()A. B.C. D.2.已知一扇形的周长为28,则该扇形面积的最大值为()A.36 B.42C.49 D.563.已知某几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.4.“不等式在上恒成立”的一个必要不充分条件是()A. B.C. D.5.以下命题(其中,表示直线,表示平面):①若,,则;②若,,则;③若,,则;④若,,则其中正确命题的个数是A.0个 B.1个C.2个 D.3个6.函数的定义域为A. B.C. D.7.若,则的值为()A. B.C.或 D.8.平面与平面平行的条件可以是()A.内有无穷多条直线与平行 B.直线,C.直线,直线,且, D.内的任何直线都与平行9.已知正方形的边长为4,动点从点开始沿折线向点运动,设点运动的路程为,的面积为,则函数的图像是()A. B.C. D.10.若命题“”是命题“”的充分不必要条件,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若幂函数图像过点,则此函数的解析式是________.12.给出下列说法:①和直线都相交的两条直线在同一个平面内;②三条两两相交的直线一定在同一个平面内;③有三个不同公共点的两个平面重合;④两两相交且不过同一点的四条直线共面其中正确说法的序号是______13.用二分法研究函数f(x)=x3+3x-1的零点时,第一次经计算,可得其中一个零点x0∈(0,1),那么经过下一次计算可得x0∈___________(填区间).14.已知函数的图象上关于轴对称的点恰有9对,则实数的取值范围_________.15.已知,则__________16.棱长为2个单位长度的正方体中,以为坐标原点,以,,分别为,,轴,则与的交点的坐标为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,(1)若,求,;(2)若,求实数的取值范围18.已知的三个顶点.求:(1)边上高所在的直线方程;(2)边中线所在的直线方程.19.已知函数的部分图象如图所示,且在处取得最大值,图象与轴交于点(1)求函数的解析式;(2)若,且,求值20.已知,.(1)求;(2)若角的终边上有一点,求.21.甲、乙两地相距1000千米,某货车从甲地匀速行驶到乙地,速度为v千米/小时(不得超过120千米/小时).已知该货车每小时的运输成本m(以元为单位)由可变部分和固定部分组成:可变部分与速度v(单位:km/h)的关系是;固定部分y2为81元(1)根据题意可得,货车每小时的运输成本m=________,全程行驶的时间为t=________;(2)求该货车全程的运输总成本与速度v的函数解析式;(3)为了使全程的运输总成本最小,该货车应以多大的速度行驶?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用数形结合,画出函数的图象,判断函数的零点的大小即可【详解】函数,,的零点转化为,,与的图象的交点的横坐标,因为零点分别为在坐标系中画出,,与的图象如图:可知,,,满足故选:2、C【解析】由题意,根据扇形面积公式及二次函数的知识即可求解.【详解】解:设扇形的半径为R,弧长为l,由题意得,则扇形的面积,所以该扇形面积的最大值为49,故选:C.3、B【解析】由三视图可知,该几何体是由圆柱切掉四分之一所得,故体积为.故选B.4、C【解析】先计算已知条件的等价范围,再利用充分条件和必要条件的定义逐一判断即可.【详解】因为“不等式在上恒成立”,所以当时,原不等式为在上不是恒成立的,所以,所以“不等式在上恒成立”,等价于,解得.A选项是充要条件,不成立;B选项中,不可推导出,B不成立;C选项中,可推导,且不可推导,故是的必要不充分条件,正确;D选项中,可推导,且不可推导,故是的充分不必要条件,D不正确.故选:C.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是充分不必要条件,则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件,对的集合与对应集合互不包含5、A【解析】利用线面平行和线线平行的性质和判定定理对四个命题分别分析进行选择【详解】①若a∥b,b⊂α,则a∥α或a⊂α,故错;②若a∥α,b∥α,则a,b平行、相交或异面,故②错;③若a∥b,b∥α,则a∥α或a⊂α,故③错;④若a∥α,b⊂α,则a、b平行或异面,故④错正确命题个数为0个,故选A.【点睛】本题考查空间两直线的位置关系,直线与平面的位置关系,主要考查线面平行的判定和性质.6、C【解析】要使函数有意义,需满足解得,所以函数的定义域为考点:求函数的定义域【易错点睛】本题是求函数的定义域,注意分母不能为0,同时本题又将对数的运算,交集等知识联系在一起,重点考查学生思维能力的全面性和缜密性,凸显了知识之间的联系性、综合性,能较好的考查学生的计算能力和思维的全面性.学生很容易忽略,造成失误,注意在对数函数中,真数一定是正数,负数和零无意义考点:求函数的定义域7、A【解析】分别令和,根据集合中元素的互异性可确定结果.【详解】若,则,不符合集合元素的互异性;若,则或(舍),此时,符合题意;综上所述:.故选:A.8、D【解析】由题意利用平面与平面平行的判定和性质,逐一判断各个选项是否正确,从而得出结论【详解】解:当内有无穷多条直线与平行时,与可能平行,也可能相交,故A错误当直线,时,与可能平行也可能相交,故B错误当直线,直线,且,,如果,都平行,的交线时满足条件,但是与相交,故C错误当内的任何直线都与平行时,由两个平面平行的定义可得,这两个平面平行,故D正确;故选:D9、D【解析】当在点的位置时,面积为,故排除选项.当在上运动时,面积为,轨迹为直线,故选选项.10、C【解析】解不等式得,进而根据题意得集合是集合的真子集,再根据集合关系求解即可.【详解】解:解不等式得,因为命题“”是命题“”的充分不必要条件,所以集合是集合的真子集,所以故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先用待定系数法设出函数的解析式,再代入点的坐标,计算出参数的值即可得出正确选项.【详解】设幂函数的解析式为,由于函数图象过点,故有,解得,所以该函数的解析式是,故答案为:.【点睛】该题考查的是有关应用待定系数法求幂函数的解析式的问题,属于基础题目.12、④【解析】利用正方体可判断①②的正误,利用公理3及其推论可判断③④的正误.【详解】如图,在正方体中,,,但是异面,故①错误.又交于点,但不共面,故②错误.如果两个平面有3个不同公共点,且它们共线,则这两个平面可以相交,故③错误.如图,因为,故共面于,因为,故,故即,而,故,故即即共面,故④正确.故答案为:④13、【解析】根据零点存在性定理判断零点所在区间.【详解】,,所以下一次计算可得.故答案为:14、【解析】求出函数关于轴对称的图像,利用数形结合可得到结论.【详解】若,则,,设为关于轴对称的图像,画出的图像,要使图像上有至少9个点关于轴对称,即与有至少9个交点,则,且满足,即则,解得,故答案为【点睛】解分段函数或两个函数对称性的题目时,可先将一个函数的对称图像求出,利用数形结合的方式得出参数的取值范围;遇到题目中指对函数时,需要讨论底数的范围,分别画出图像进行讨论.15、【解析】将题干中的两个等式先平方再相加,利用两角差的余弦公式可求得结果.【详解】由,,两式相加有,可得故答案为:.16、【解析】设即的坐标为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)根据集合的基本运算即可求解(2)根据A∩B=B,得到B⊆A,再建立条件关系即可求实数a的取值范围【小问1详解】若a=2,A={x|0<x<2},∴={x|x≤0或x≥2},∵B={x|1<x<3},∴A∪B={x|0<x<3},∴={x|2≤x<3}【小问2详解】∵A∩B=B,∴B⊆A,∴a≥3∴实数a的取值范围为[3,+∞)18、(1);(2).【解析】(1)利用相互垂直的直线斜率之间的关系可得高所在的直线的斜率,进而得出点斜式(2)利用中点坐标公式可得边的中点,利用两点式即可得出【详解】解:(1)又因为垂直,直线的方程为,即;(2)边中点E,中线的方程为,即.【点睛】本题考查了相互垂直的直线斜率之间的关系、中点坐标公式、两点式、一般式,考查了推理能力与计算能力,属于基础题19、(1)(2)【解析】(1)根据图象可得函数的周期,从而求得,结合函数在处取得最大值,可求得的值,再根据图象与轴交于点,可求得,从而可得解;(2)根据(1)及角的范围求得,,再利用两角差的余弦公式进行化简可求解.【小问1详解】由图象可知函数的周期为,所以.又因为函数在处取得最大值所以,所以,因为,所以,故.又因为,所以,所以.【小问2详解】由(1)有,因为,则,由于,从而,因此.所以.20、(1)(2)【解析】(1)由条件求得,将所求式展开计算(2)由条件求得与,再由二倍角与两角和的正切公式计算小问1详解】,,则故【小问2详解】角终边上一点,则由(1)可得,21、(1);;(2)(0<v≤120);(3)v=90k
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度桥梁栏杆采购合同模板6篇
- 2025年度口腔诊所投资合作与风险分担合同3篇
- 二零二五版材料采购合同补充协议:技术创新共享2篇
- 二零二五版抵押借款合同与借款合同签订流程与风险防范3篇
- 二零二五版国有房产出售合同(智慧社区共建协议)3篇
- 2025年度餐饮业中央厨房租赁合同3篇
- 二零二五年度35KV变电站电气设备技术改造合同3篇
- 二零二五年房地产项目乡村振兴战略合作开发合同3篇
- 二零二五版班组分包道路养护合同3篇
- 2025版金融产品股权及债权转让与风险管理合同3篇
- 公务员考试工信部面试真题及解析
- GB/T 15593-2020输血(液)器具用聚氯乙烯塑料
- 2023年上海英语高考卷及答案完整版
- 西北农林科技大学高等数学期末考试试卷(含答案)
- 金红叶纸业简介-2 -纸品及产品知识
- 《连锁经营管理》课程教学大纲
- 《毕淑敏文集》电子书
- 颈椎JOA评分 表格
- 员工岗位能力评价标准
- 定量分析方法-课件
- 朱曦编著设计形态知识点
评论
0/150
提交评论