版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江诸暨市牌头中学2025届高二数学第一学期期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,集合或,是实数集,则()A. B.C. D.2.已知点是点在坐标平面内的射影,则点的坐标为()A. B.C. D.3.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为、,其中,.如果这时气球的高度,则河流的宽度BC为()A. B.C. D.4.已知命题,,则()A., B.,C., D.,5.下列命题是真命题的个数为()①不等式的解集为②不等式的解集为R③设,则④命题“若,则或”为真命题A1 B.2C.3 D.46.已知动圆M与直线y=2相切,且与定圆C:外切,求动圆圆心M的轨迹方程A. B.C. D.7.将一枚均匀的骰子先后抛掷3次,至少出现两次点数为3的概率为()A. B.C. D.8.圆心为的圆,在直线x﹣y﹣1=0上截得的弦长为,那么,这个圆的方程为()A. B.C. D.9.如图,两个半径为R的相交大圆,分别内含一个半径为r的同心小圆,且同心小圆均与另一个大圆外切.已知时,在两相交大圆的区域内随机取一点,则该点取自两大圆公共部分的概率为()A. B.C. D.10.现有4本不同的书全部分给甲、乙、丙3人,每人至少一本,则不同的分法有()A.12种 B.24种C.36种 D.48种11.已知是椭圆的左焦点,为椭圆上任意一点,点坐标为,则的最大值为()A. B.13C.3 D.512.甲、乙、丙、丁、戊共5名同学进行劳动技术比赛,决出第1名到第5名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军.”对乙说:“你当然不会是最差的.”从这两个回答分析,5人的名次排列方式共有()种A.54 B.72C.96 D.120二、填空题:本题共4小题,每小题5分,共20分。13.圆的圆心坐标为___________;半径为___________.14.有公共焦点,的椭圆和双曲线的离心率分别为,,点为两曲线的一个公共点,且满足,则的值为______15.已知数列是等差数列,,公差,为其前n项和,满足,则当取得最大值时,______16.若圆柱的高、底面半径均为1,则其表面积为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:的上顶点与椭圆的左右顶点连线的斜率之积为-.(1)求椭圆C的离心率(2)点M(,)在椭圆C上,椭圆的左顶点为D,上顶点为B,点A的坐标为(1,0),过点D的直线L与椭圆在第一象限交于点P,与直线AB交于点Q设L的斜率为k,若,求k的值.18.(12分)已知函数在处的切线与轴平行(1)求的值;(2)判断在上零点的个数,并说明理由19.(12分)在数列中,,是与的等差中项,(1)求证:数列是等差数列(2)令,求数列的前项的和20.(12分)如图,已知三棱柱的侧棱与底面垂直,,,和分别是和的中点,点在直线上,且.(1)证明:无论取何值,总有;(2)是否存在点,使得平面与平面所成角为?若存在,试确定点的位置;若不存在,请说明理由.21.(12分)已知抛物线的顶点为原点,焦点F在x轴的正半轴,F到直线的距离为.点为此抛物线上的一点,.直线l与抛物线交于异于N的两点A,B,且.(1)求抛物线方程和N点坐标;(2)求证:直线AB过定点,并求该定点坐标.22.(10分)2017年厦门金砖会晤期间产生碳排放3095吨.2018年起厦门市政府在下潭尾湿地生态公园通过种植红树林的方式中和会晤期间产生的碳排放,拟用20年时间将碳排放全部吸收,实现“零碳排放”目标,向世界传递低碳,环保办会的积极信号,践行金砖国家倡导的可持续发展精神据研究估算,红树林的年碳吸收量随着林龄每年递增2%,2018年公园已有的红树林年碳吸收量为130吨,如果从2019年起每年新种植红树林若干亩,新种植的红树林当年的年碳吸收量为m()吨.2018年起,红树林的年碳吸收量依次记,,,…(1)①写出一个递推公式,表示与之间的关系;②证明:是等比数列,并求的通项公式;(2)为了提前5年实现厦门会晤“零碳排放”的目标,m的最小值为多少?参考数据:,,
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先化简集合,再由集合的交集、补集运算求解即可【详解】,或,故故选:A2、D【解析】根据空间中射影的定义即可得到答案.【详解】因为点是点在坐标平面内的射影,所以的竖坐标为0,横、纵坐标与A点的横、纵坐标相同,所以点的坐标为.故选:D3、D【解析】由题意得,,,然后在和求出,从而可求出的值【详解】如图,由题意得,,,在中,,在中,,所以,故选:D4、C【解析】利用全称量词命题的否定可得出结论.【详解】命题为全称量词命题,该命题的否定为,.故选:C.5、B【解析】举反例判断A,解一元二次不等式确定B,由导数的运算法则求导判断C,利用逆否命题判断D【详解】显然不是的解,A错;,B正确;,,C错;命题“若,则或”的逆否命题是:若且,则,是真命题,原命题也是真命题,D正确真命题个数2.故选:B6、D【解析】由题意动圆M与直线y=2相切,且与定圆C:外切∴动点M到C(0,-3)的距离与到直线y=3的距离相等由抛物线的定义知,点M的轨迹是以C(0,-3)为焦点,直线y=3为准线的抛物线故所求M的轨迹方程为考点:轨迹方程7、D【解析】利用次独立重复试验中事件A恰好发生次的概率计算公式直接求解.【详解】解:将一枚均匀的筛子先后抛掷3次,每次出现点数为3的概率都是至少出现两次点数为3的概率为:故选:D8、A【解析】由垂径定理,根据弦长的一半及圆心到直线的距离求出圆半径,即可写出圆的标准方程.【详解】圆心到直线x﹣y﹣1=0的距离弦长,设圆半径为r,则故r=2则圆的标准方程为故选:A【点睛】本题主要考查直线与圆的位置关系和圆的标准方程,属于基础题.9、C【解析】设D为线段AB的中点,求得,在中,可得.进而求得两大圆公共部分的面积为:,利用几何概型计算即可得出结果.【详解】如图,设D为线段AB的中点,,在中,.两大圆公共部分的面积为:,则该点取自两大圆公共部分的概率为.故选:C.10、C【解析】先把4本书按2,1,1分为3组,再全排列求解.【详解】先把4本书按2,1,1分为3组,再全排列,则有种分法,故选:C11、B【解析】利用椭圆的定义求解.【详解】如图所示:,故选:B12、A【解析】根据题意,分2种情况讨论:①、甲是最后一名,则乙可以为第二、三、四名,剩下的三人安排在其他三个名次,②、甲不是最后一名,甲乙需要排在第二、三、四名,剩下的三人安排在其他三个名次,由加法原理计算可得答案【详解】根据题意,甲乙都没有得到冠军,而乙不是最后一名,分2种情况讨论:①甲是最后一名,则乙可以为第二、三、四名,即乙有3种情况,剩下的三人安排在其他三个名次,有种情况,此时有种名次排列情况;②甲不是最后一名,甲乙需要排在第二、三、四名,有种情况,剩下的三人安排在其他三个名次,有种情况,此时有种名次排列情况;则一共有种不同的名次情况,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】配方后可得圆心坐标和半径【详解】将圆的一般方程化为圆标准方程是,圆心坐标为,半径为故答案为:;14、4【解析】可设为第一象限的点,,,求出,,化简即得解.【详解】解:可设为第一象限的点,,,由椭圆定义可得,由双曲线的定义可得,可得,,由,可得,即为,化为,则故答案为:415、9或10【解析】等差数列通项公式的使用.【详解】数列是等差数列,且,得,得,则有,又因为,公差,所以或10时,取得最大值故答案为:9或1016、【解析】根据圆柱表面积公式求解即可.【详解】根据题意得到圆柱的高,底面半径,则表面积.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)1【解析】(1)根据椭圆的上顶点与椭圆的左右顶点连线的斜率之积为-,由求解;(2)根据点M(,)在椭圆C上,顶点,再由,求得椭圆方程,由,结合,得到,设直线方程为,与椭圆方程联立,求得点P的坐标,再由,求得Q的坐标,代入求解.【小问1详解】解:设椭圆C:的上顶点为,左顶点为,右顶点为,因为椭圆的上顶点与椭圆的左右顶点连线的斜率之积为-,所以,即,又所以,解得;【小问2详解】因为点M(,)在椭圆C上,所以,又,解得,所以椭圆方程为,,则,因为,所以,又,所以,则,设,则,当时,则,不合题意;当时,设直线方程为,与题意方程联立,消去y得:则,所以,则,因为,由,得,因为,所以,化简得,因,则.18、(1)0(2)f(x)在(0,π)上有且只有一个零点,理由见解析【解析】(1)利用导数的几何意义求解;(2)由,可得,令,,,,利用导数法求解.【小问1详解】解:,所以k=f′(0)=-a=0,所以a=0;【小问2详解】由,可得,令,,所以,①当时,sinx+cosx≥1,ex>1,所以g′(x)>0,所以g(x)在上单调递增,又因为g(0)=0,所以g(x)在上无零点;②当时,令,所以h′(x)=2cosxex<0,即h(x)在上单调递减,又因为,h(π)=-eπ-1<0,所以存在,,所以g(x)在上单调递增,在上单调递减,因为,g(π)=-π<0,所以g(x)在上且只有一个零点;综上所述:f(x)在(0,π)上有且只有一个零点19、(1)证明见解析;(2).【解析】(1)求得,利用等差数列的定义可证得结论成立;(2)求出,可计算得出,利用并项求和法可求得数列的前项的和.小问1详解】解:由题意知是与的等差中项,可得,可得,则,可得,所以,,又由,可得,所以数列是首项和公差均为的等差数列.【小问2详解】解:由(1)可得:,,对任意的,,因此,.20、(1)证明见解析;(2)不存在,理由见解析.【解析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,计算得出,即可得出结论;(2)计算出平面的一个法向量,利用空间向量法可得出关于的方程,即可得出结论.【详解】(1)因为平面,,以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、,,,所以,,则,因此,无论取何值,总有;(2),设平面的法向量为,则,取,则,,所以,平面的一个法向量为,易知平面的一个法向量为,由题意可得,整理可得,,此方程无解,因此,不存在点,使得平面与平面所成的角为.21、(1),(2)证明见解析,定点【解析】(1)设抛物线的标准方程为,利用点到直线距离公式可求出,再利用焦半径公式可求出N点坐标;(2)设直线的方程为,与抛物线联立,利用韦达定理计算,可得关系,然后代入直线方程可得定点.【小问1详解】设抛物线的标准方程为,,其焦点为则,∴所以抛物线的方程为.,所以,所以.因为,所以,所以.【小问2详解】由题意知,直线的斜率不为0,设直线的方程为(),联立方程得设两个交点,(,).所以所以,即整理得,此时恒成立,此时直线l的方程为,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《活动管理观念篇》课件
- 《诗歌鉴赏解题技巧》课件
- 2024年农业局振兴农业科技工作总结
- 寒假自习课 25春初中道德与法治八年级下册教学课件 第三单元 第六课 第5课时 国家司法机关
- 某省房屋建筑和基础设施工程标准施工招标文件
- 《诗词赏析》课件
- 2015年高考语文试卷(北京)(解析卷)
- 体育用品销售代表工作总结
- 建筑行业增强施工现场卫生保障
- 《电动力学》课件
- 医院感染监测清单
- Q∕SY 05592-2019 油气管道管体修复技术规范
- 《1.我又长大了一岁》教学课件∣泰山版
- JIS G3141-2021 冷轧钢板及钢带标准
- qes三体系审核培训ppt课件
- 篮球校本课程教材
- 小学数学校本教材(共51页)
- 遗传群体文献解读集
- 工艺装备环保性与安全性的设计要点
- [玻璃幕墙施工方案]隐框玻璃幕墙施工方案
- 国家开放大学电大本科《管理案例分析》2023-2024期末试题及答案(试卷代号:1304)
评论
0/150
提交评论