云南省南涧县民族中学2025届高一上数学期末综合测试试题含解析_第1页
云南省南涧县民族中学2025届高一上数学期末综合测试试题含解析_第2页
云南省南涧县民族中学2025届高一上数学期末综合测试试题含解析_第3页
云南省南涧县民族中学2025届高一上数学期末综合测试试题含解析_第4页
云南省南涧县民族中学2025届高一上数学期末综合测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省南涧县民族中学2025届高一上数学期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,则()A.a>b>c B.a>c>bC.c>a>b D.c>b>a2.已知是定义在上的减函数,若对于任意,均有,,则不等式的解集为()A. B.C. D.3.设集合则().A. B.C. D.4.函数f(x)=|x3|•ln的图象大致为()A. B.C. D.5.函数其中(,)的图象如图所示,为了得到图象,则只需将的图象()A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向左平移个单位长度6.=()A. B.C. D.7.关于函数,下列说法正确的是()A.最小值为0 B.函数为奇函数C.函数是周期为周期函数 D.函数在区间上单调递减8.已知命题,,命题,,则下列命题中为真命题的是()A. B.C. D.9.圆x2+y2-4x+6y=0和圆x2+y2-6x=0交于A,B两点,则AB的垂直平分线的方程是()A.x+y+3=0 B.2x-y-5=0C.3x-y-9=0 D.4x-3y+7=010.已知指数函数,将函数的图象上的每个点的横坐标不变,纵坐标扩大为原来的倍,得到函数的图象,再将的图象向右平移个单位长度,所得图象恰好与函数的图象重合,则a的值是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则的值为_______.12.已知幂函数为奇函数,则___________.13.已知函数的最大值为3,最小值为1,则函数的值域为_________.14.若函数在区间上单调递减,则实数的取值范围是__________15.设函数,若函数在上的最大值为M,最小值为m,则______16.若,则____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某地区每年各个月份的月平均最高气温近似地满足周期性规律,因此第个月的月平均最高气温可近似地用函数来刻画,其中正整数表示月份且,例如表示月份,和是正整数,,.统计发现,该地区每年各个月份的月平均最高气温基本相同,月份的月平均最高气温为摄氏度,是一年中月平均最高气温最低的月份,随后逐月递增直到月份达到最高为摄氏度.(1)求的解析式;(2)某植物在月平均最高气温低于摄氏度的环境中才可生存,求一年中该植物在该地区可生存的月份数.18.阅读与探究人教A版《普通高中课程标准实验教科书数学4(必修)》在第一章小结中写道:将角放在直角坐标系中讨论不但使角的表示有了统一的方法,而且使我们能够借助直角坐标系中的单位圆,建立角的变化与单位圆上点的变化之间的对应关系,从而用单位圆上点的纵坐标、横坐标来表示圆心角的正弦函数、余弦函数.因此,正弦函数、余弦函数的基本性质与圆的几何性质(主要是对称性)之间存在着非常紧密的联系.例如,和单位圆相关的“勾股定理”与同角三角函数的基本关系有内在的一致性;单位圆周长为与正弦函数、余弦函数的周期为是一致的;圆的各种对称性与三角函数的奇偶性、诱导公式等也是一致的等等.因此,三角函数的研究过程能够很好地体现数形结合思想.依据上述材料,利用正切线可以讨论研究得出正切函数的性质.比如:由图1.2-7可知,角的终边落在四个象限时均存在正切线;角的终边落在轴上时,其正切线缩为一个点,值为;角的终边落在轴上时,其正切线不存在;所以正切函数的定义域是.(1)请利用单位圆中的正切线研究得出正切函数的单调性和奇偶性;(2)根据阅读材料中途1.2-7,若角为锐角,求证:.19.如图,在直四棱柱中,底面是边长为2的正方形,分别为线段,的中点.(1)求证:||平面;(2)四棱柱的外接球的表面积为,求异面直线与所成的角的大小.20.已知函数f(x)=coscos-sinxcosx+(1)求函数f(x)的最小正周期和最大值;(2)求函数f(x)单调递增区间21.已知函数为奇函数,且图象的相邻两对称轴间的距离为.(1)求的解析式与单调递减区间;(2)已知在时,求方程的所有根的和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】分别求出的范围即可比较.【详解】,,,,,.故选:C.2、D【解析】根据已知等式,结合函数的单调性进行求解即可.【详解】令时,,由,因为是定义在上的减函数,所以有,故选:D3、D【解析】利用求集合交集的方法求解.【详解】因为所以.故选:D.【点睛】本题主要考查集合的交集运算,明确集合交集的含义是求解的关键,侧重考查数学运算的核心素养.4、A【解析】判断函数的奇偶性和对称性,利用特殊点的函数值是否对应进行排除即可【详解】f(-x)=|x3|•ln=-|x3|•ln=-f(x),则函数f(x)是奇函数,图象关于原点对称,排除B,D,f()=ln=ln<0,排除C,故选A【点睛】本题主要考查函数图象的识别和判断,利用函数奇偶性和特殊值进行排除是解决本题的关键5、D【解析】根据图像计算周期和最值得到,,再代入点计算得到,根据平移法则得到答案.【详解】根据图象:,,故,,故,,即,,,当时,满足条件,则,故只需将的图象向左平移个单位即可.故选:D.6、B【解析】利用诱导公式和特殊角的三角函数值直接计算作答.【详解】.故选:B7、D【解析】根据三角函数的性质,得到的最小值为,可判定A不正确;根据奇偶性的定义和三角函数的奇偶性,可判定C不正确;举例可判定C不正确;根据三角函数的单调性,可判定D正确.【详解】由题意,函数,当时,可得,所以,当时,可得,所以,所以函数的最小值为,所以A不正确;又由,所以函数为偶函数,所以B不正确;因为,,所以,所以不是的周期,所以C不正确;当时,,,当时,,即函数在区间上单调递减,又因为,所以函数在区间上单调递减,所以D正确.故选:D.8、D【解析】先判断命题的真假,再利用复合命题的真假判断得解.【详解】解:方程的,故无解,则命题p为假;而,故命题q为真;故命题、、均为假命题,为真命题.故选:D9、C【解析】两圆公共弦的垂直平分线的方程即为两圆圆心所在直线的方程,求出两圆的圆心,从而可得答案.【详解】解:AB的垂直平分线的方程即为两圆圆心所在直线的方程,圆x2+y2-4x+6y=0的圆心为,圆x2+y2-6x=0的圆心为,则两圆圆心所在直线的方程为,即3x-y-9=0.故选:C.10、D【解析】根据函数图象变换求出变换后的函数解析式,结合已知条件可得出关于实数的等式,进而可求得实数的值.【详解】由题意可得,再将的图象向右平移个单位长度,得到函数,又因为,所以,,整理可得,因为且,解得.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、-.【解析】将和分别平方计算可得.【详解】∵,∴,∴,∴,又∵,∴,∴,故答案为:-.【点晴】此题考同脚三角函数基本关系式应用,属于简单题.12、【解析】根据幂函数的定义,结合奇函数的定义进行求解即可.【详解】因为是幂函数,所以,或,当时,,因为,所以函数是偶函数,不符合题意;当时,,因为,所以函数是奇函数,符合题意,故答案为:13、【解析】根据三角函数性质,列方程求出,得到,进而得到,利用换元法,即可求出的值域【详解】根据三角函数性质,的最大值为,最小值为,解得,则函数,则函数,,令,则,令,由得,,所以,的值域为故答案为:【点睛】关键点睛:解题关键在于求出后,利用换元法得出,,进而求出的范围,即可求出所求函数的值域,难度属于中档题14、【解析】本题等价于在上单调递增,对称轴,所以,得.即实数的取值范围是点睛:本题考查复合函数的单调性问题.复合函数的单调性遵循“同增异减”的性质.所以本题的单调性问题就等价于在上单调递增,为开口向上的抛物线单调性判断,结合图象即可得到答案15、2【解析】令,证得为奇函数,从而可得在的最大值和最小值之和为0,进而可求出结果.【详解】设,定义域为,则,所以,即,所以为奇函数,所以在的最大值和最小值之和为0,令,则因为,所以函数的最大值为,最小值为,则,∴故答案为:2.16、##0.6【解析】,根据三角函数诱导公式即可求解.【详解】=.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,为正整数(2)一年中该植物在该地区可生存的月份数是【解析】(1)先利用月平均气温最低、最高的月份求出周期和及值,再利用最低气温和最高气温求出、值,即得到所求函数的解析式;(2)先判定函数的单调性,再代值确定符合要求的月份即可求解.【小问1详解】解:因为月份的月平均最高气温最低,月份的月平均最高气温最高,所以最小正周期.所以.所以,.因为,所以.因为月份的月平均最高气温为摄氏度,月份的月平均最高气温为摄氏度,所以,.所以,.所以的解析式是,,为正整数.【小问2详解】解:因为,,为正整数.所以在区间上单调递增,在区间上单调递减.因为某植物在月平均最高气温低于摄氏度的环境中才可生存,且,,所以该植物在1月份,2月份,3月份可生存.又,所以该植物在11月份,12月份也可生存.即一年中该植物在该地区可生存的月份数是.18、(1)见解析(2)见解析【解析】(1)在单位圆中画出角的正切线,观察随增大正切线的值得变化情况,再观察时,正切线的值随增大时的变化情况,发现正切函数在区间上单调递增.(2)当是锐角时,有,由此得到.解析:(1)当时,增大时正切线的值越来越大;当时,正切线与区间上的情况完全一样;随着角的终边不停旋转,正切线不停重复出现,故可得出正切函数在区间上单调递增;由题意知正切函数的定义域关于原点对称,在坐标系中画出角和,它们的终边关于轴对称,在单位圆中作出它们的正切线,可以发现它们的正切线长度相等,方向相反,即,得出正切函数为奇函数.(2)如图,当为锐角时,在单位圆中作出它的正弦线,正切线,又因为,所以,又,而,故即.点睛:三角函数线是研究三角函数性质(如定义域、值域、周期性、奇偶性等)的重要工具,它体现了数形结合的数学思想,是解三角不等式、三角方程等不可或缺的工具.19、(1)见解析;(2)【解析】(1)连接BD1,由中位线定理证明EF∥D1B,由线面平行的判定定理证明EF∥平面ABC1D1;(2)由(1)和异面直线所成角的定义,得异面直线EF与BC所成的角是∠D1BC,由题意和球的表面积公式求出外接球的半径,由勾股定理求出侧棱AA1的长,由直四棱柱的结构特征和线面垂直的定义,判断出BC⊥CD1,在RT△CC1D1中求出tan∠D1BC,求出∠D1BC可得答案.试题解析:(1)连接,在中,分别为线段的中点,∴为中位线,∴,而面,面,∴平面.(2)由(1)知,故即为异面直线与所成的角.∵四棱柱的外接球的表面积为,∴四棱柱的外接球的半径,设,则,解得,在直四棱柱中,∵平面,平面,∴,在中,,∴,∴异面直线与所成的角为.20、(1)最小正周期为T=π,最大值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论