四川省广安遂宁资阳等七市2025届高二上数学期末达标检测试题含解析_第1页
四川省广安遂宁资阳等七市2025届高二上数学期末达标检测试题含解析_第2页
四川省广安遂宁资阳等七市2025届高二上数学期末达标检测试题含解析_第3页
四川省广安遂宁资阳等七市2025届高二上数学期末达标检测试题含解析_第4页
四川省广安遂宁资阳等七市2025届高二上数学期末达标检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省广安遂宁资阳等七市2025届高二上数学期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的两个焦点分别为,且平行于轴的直线与椭圆交于两点,那么的值为()A. B.C. D.2.设函数若函数有两个零点,则实数m的取值范围是()A. B.C. D.3.在等比数列中,,则等于()A. B.C. D.4.已知椭圆上一点到左焦点的距离为,是的中点,则()A.1 B.2C.3 D.45.直线的倾斜角的大小为()A. B.C. D.6.参加抗疫的300名医务人员,编号为1,2,…,300.为了解这300名医务人员的年龄情况,现用系统抽样的方法从中抽取15名医务人员的年龄进行调查.若抽到的第一个编号为6,则抽到的第二个编号为()A.21 B.26C.31 D.367.在等比数列中,若是函数的极值点,则的值是()A. B.C. D.8.早在古希腊时期,亚历山大的科学家赫伦就发现:光从一点直接传播到另一点选择最短路径,即这两点间的线段.若光从一点不是直接传播到另一点,而是经由一面镜子(即便镜面是曲面)反射到另一点,仍然选择最短路径.已知曲线,且将假设为能起完全反射作用的曲面镜,若光从点射出,经由上一点反射到点,则()A. B.C. D.9.已知抛物线的焦点为F,准线为l,点P在抛物线上,直线PF交x轴于Q点,且,则点P到准线l的距离为()A.4 B.5C.6 D.710.已知,则下列不等式一定成立的是()A B.C. D.11.已知f(x)为R上的可导函数,其导函数为,且对于任意的x∈R,均有,则()A.e-2021f(-2021)>f(0),e2021f(2021)<f(0) B.e-2021f(-2021)<f(0),e2021f(2021)<f(0)C.e-2021f(-2021)>f(0),e2021f(2021)>f(0) D.e-2021f(-2021)<f(0),e2021f(2021)>f(0)12.直线的斜率是方程的两根,则与的位置关系是()A.平行 B.重合C.相交但不垂直 D.垂直二、填空题:本题共4小题,每小题5分,共20分。13.若圆的一条直径的端点是、,则此圆的方程是_______14.已知数列满足:,且,记,若,则___________.(用表示)15.已知是椭圆的两个焦点,分别是该椭圆的左顶点和上顶点,点在线段上,则的最小值为__________.16.若直线的方向向量为,平面的一个法向量为,则直线与平面所成角的正弦值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点,圆C:,l:.(1)若直线过点M,且被圆C截得的弦长为,求该直线的方程;(2)设P为已知直线l上的动点,过点P向圆C作一条切线,切点为Q,求的最小值.18.(12分)有1000人参加了某次垃圾分类知识竞赛,从中随机抽取100人,将这100人的此次竞赛的分数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100],并整理得到如下频率分布直方图.(1)求图中a的值;(2)估计总体1000人中竞赛分数不少于70分的人数;(3)假设同组中的每个数据都用该组区间的中点值代替,估计总体1000人的竞赛分数的平均数.19.(12分)已知函数在处的切线垂直于直线.(1)求(2)求的单调区间20.(12分)某牧场今年初牛的存栏数为1200,预计以后每年存栏数的增长率为8%,且每年年底卖出100头牛,设牧场从今年起每年年初的计划存栏数依次为,,….(参考数据:,,.)(1)写出一个递推公式,表示与之间的关系;(2)将(1)中的递推关系表示成的形式,其中k,r为常数;(3)求的值(精确到1).21.(12分)在所有棱长均为2的三棱柱ABC-A1B1C1中,∠B1BC=60°,求证:(1)AB1⊥BC;(2)A1C⊥平面AB1C1.22.(10分)在水平桌面上放一只内壁光滑的玻璃水杯,已知水杯内壁为抛物面型(抛物面指抛物线绕其对称轴旋转所得到的面),抛物面的轴截面是如图所示的抛物线.现有一些长短不一、质地均匀的细直金属棒,其长度均不小于抛物线通径的长度(通径是过抛物线焦点,且与抛物线的对称轴垂直的直线被抛物线截得的弦),若将这些细直金属棒,随意丢入该水杯中,实验发现:当细棒重心最低时,达到静止状态,此时细棒交汇于一点.(1)请结合你学过的数学知识,猜想细棒交汇点的位置;(2)以玻璃水杯内壁轴截面的抛物线顶点为原点,建立如图所示直角坐标系.设玻璃水杯内壁轴截面的抛物线方程为,将细直金属棒视为抛物线的弦,且弦长度为,以细直金属棒的中点为其重心,请从数学角度解释上述实验现象.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据椭圆的方程求出,再由椭圆的对称性及定义求解即可.【详解】由椭圆的对称性可知,,所以,又椭圆方程为,所以,解得,所以,故选:A2、D【解析】有两个零点等价于与的图象有两个交点,利用导数分析函数的单调性与最值,画出函数图象,数形结合可得结果.【详解】解:设,则,所以在上递减,在上递增,,且时,,有两个零点等价于与的图象有两个交点,画出的图象,如下图所示,由图可得,时,与的图象有两个交点,此时,函数有两个零点,实数m的取值范围是,故选:D.【点睛】方法点睛:本题主要考查分段函数的性质、利用导数研究函数的单调性、函数的零点,以及数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质3、C【解析】根据,然后与,可得,最后简单计算,可得结果.【详解】在等比数列中,由所以,又,所以所以故选:C【点睛】本题考查等比数列的性质,重在计算,当,在等差数列中有,在等比数列中,灵活应用,属基础题.4、A【解析】由椭圆的定义得,进而根据中位线定理得.【详解】解:由椭圆方程得,即,因为由椭圆的定义得,,所以,因为是的中点,是的中点,所以.故选:A5、B【解析】由直线方程,可知直线的斜率,设直线的倾斜角为,则,又,所以,故选6、B【解析】将300个数编号:001,002,003,,3000,再平均分为15个小组,然后按系统抽样方法得解.【详解】将300个数编号:001,002,003,,3000,再平均分为15个小组,则第一编号为006,第二个编号为.故选:B.7、B【解析】根据导数的性质求出函数的极值点,再根据等比数列的性质进行求解即可.【详解】,当时,单调递增,当时,单调递减,当时,单调递增,所以是函数的极值点,因为,且所以,故选:B8、B【解析】记椭圆的右焦点为,根据椭圆定义,得到,由题中条件,确定本题的本质即是求的最小值,结合题中数据,即可求出结果.【详解】记椭圆的右焦点为,根据椭圆的定义可得,,所以,因为,当且仅当三点共线时,,即;由题意可得,求的值,即是求最短路径,即求的最小值,所以的最小值为,因此.故选:B.【点睛】思路点睛:求解椭圆上动点到一焦点和一定点距离和的最小值或差的最大值时,一般需要利用椭圆的定义,将问题转化为动点与另一焦点以及该定点距离和的最值问题来求解即可.9、C【解析】根据题干条件得到相似,进而得到,求出点P到准线l的距离.【详解】由题意得:,准线方程为,因为,所以,故点P到准线l的距离为.故选:C10、B【解析】运用不等式的性质及举反例的方法可求解.【详解】对于A,如,满足条件,但不成立,故A不正确;对于B,因为,所以,所以,故B正确;对于C,因为,所以,所以不成立,故C不正确;对于D,因为,所以,所以,故D不正确.故选:B11、D【解析】通过构造函数法,结合导数确定正确答案.【详解】构造函数,所以在上递增,所以,即.故选:D12、C【解析】由韦达定理可得方程的两根之积为,从而可知直线、的斜率之积为,进而可判断两直线的位置关系【详解】设方程的两根为、,则直线、的斜率,故与相交但不垂直故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先设圆上任意一点的坐标,然后利用直径对应的圆周角为直角,再利用向量垂直建立方程即可【详解】设圆上任意一点的坐标为可得:,则有:,即解得:故答案为:14、【解析】由可得,结合已知条件,利用裂项相消求和法即可得答案.【详解】解:因为,所以,即,所以,因为,所以,又,所以.故答案为:.15、【解析】由题可设,则,然后利用数量积坐标表示及二次函数的性质即得.【详解】由题可得,,设,因为点P在线段AB上,所以,∴,∴当时,的最小值为.故答案为:.16、【解析】根据空间向量夹角公式进行求解即可.【详解】设与的夹角为,直线与平面所成角为,所以,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)求出圆的圆心到直线的距离,再利用垂径定理计算列方程计算;(2)由题意可知当最小时,连线与已知直线垂直,求出,再利用计算即可.【小问1详解】由题意可知圆的圆心到直线的距离为①当直线斜率不存在时,圆的圆心到直线距离为1,满足题意;②当直线斜率存在时,设过的直线方程为:,即由点到直线距离公式列方程得:解得综上,过的直线方程为或.【小问2详解】由题意可知当最小时,连线与已知直线垂直,由勾股定理知:,所以的最小值为.18、(1)0.040;(2)750;(3)76.5.【解析】(1)由频率分布直方图的性质列出方程,能求出图中的值;(2)先求出竞赛分数不少于70分的频率,由此能估计总体1000人中竞赛分数不少于70分的人数;(3)由频率分布直方图的性质能估计总体1000人的竞赛分数的平均数【详解】(1)由频率分布直方图得:,解得图中的值为0.040(2)竞赛分数不少于70分的频率为:,估计总体1000人中竞赛分数不少于70分的人数为(3)假设同组中的每个数据都用该组区间的中点值代替,估计总体1000人的竞赛分数的平均数为:【点睛】本题主要考查频率、频数、平均数的求法,考查频率分布直方图的性质等基础知识,意在考查学生对这些知识的理解掌握水平19、(1);(2)在内单调递减,在内单调递增【解析】(1)由题意求导可得,代入可得(1),从而求,进而求切线方程;(2)的定义域为,,从而求单调性【详解】解:(1)因为在处切线垂直于,所以(2)因为的定义域为当时,当时,在内单调递减,在内单调递增【点睛】本题考查导数的几何意义,利用导数研究函数的单调性,属于基础题.20、(1)(2)(3)10626【解析】(1)根据题意,建立递推关系即可;(2)利用待定系数法求解得.(3)利用等比数列求和公式,结合已知数据求解即可.【小问1详解】解:因为某牧场今年初牛的存栏数为1200,预计以后每年存栏数的增长率为8%,且每年年底卖出100头牛,所以,且.【小问2详解】解:将化成,因为所以比较的系数,可得,解得.所以(1)中的递推公式可以化为.【小问3详解】解:由(2)可知,数列是以为首项,1.08为公比的等比数列,则.所以.21、(1)证明见解析;(2)证明见解析.【解析】(1)通过计算·=0来证得AB1⊥BC.(2)通过证明A1C⊥AC1、A1C⊥AC1来证得A1C⊥平面AB1C1.【详解】证明:(1)易知<>=120°,=+,则·=(+)·=·+·=2×2×+2×2×=0.所以AB1⊥BC.(2)易知四边形AA1C1C为菱形,所以A1C⊥AC1.因为·=(-)·(-)=(-)·(--)=·-·-·-·+·+·=·-·-·+·=2×2×-4-2×2×+4=0,所以AB1⊥A1C,又AC1∩AB1=A,所以A1C⊥平面AB1C1.22、(1)抛物线的焦点或抛物面的焦点(2)答案见解析【解析】(1)结合通径的特点可猜想得到结果;(2)将问题转化为当时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论