2025届河北省唐山市唐山第一中学高二上数学期末统考模拟试题含解析_第1页
2025届河北省唐山市唐山第一中学高二上数学期末统考模拟试题含解析_第2页
2025届河北省唐山市唐山第一中学高二上数学期末统考模拟试题含解析_第3页
2025届河北省唐山市唐山第一中学高二上数学期末统考模拟试题含解析_第4页
2025届河北省唐山市唐山第一中学高二上数学期末统考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河北省唐山市唐山第一中学高二上数学期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在数列中,,,则()A. B.C. D.2.已知,,,,则下列不等关系正确的是()A. B.C. D.3.已知双曲线的离心率为,则双曲线C的渐近线方程为()A. B.C. D.4.已知抛物线的焦点为,点在抛物线上,且,则的横坐标为()A.1 B.C.2 D.35.如图,将边长为4的正方形折成一个正四棱柱的侧面,则异面直线AK和LM所成角的大小为()A.30° B.45°C.60° D.90°6.如图,在正三棱柱中,若,则C到直线的距离为()A. B.C. D.7.已知的二项展开式的各项系数和为32,则二项展开式中的系数为A5 B.10C.20 D.408.等比数列的各项均为正数,且,则()A.5 B.10C.4 D.9.已知点是双曲线的左、右焦点,以线段为直径的圆与双曲线在第一象限的交点为,若,则()A.与双曲线的实轴长相等B.的面积为C.双曲线的离心率为D.直线是双曲线的一条渐近线10.已知空间向量,,若,则实数的值是()A. B.0C.1 D.211.已知不等式解集为,下列结论正确的是()A. B.C. D.12.设抛物线的焦点为,准线与轴的交点为,是上一点,若,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知递增数列共有2021项,且各项均不为零,,如果从中任取两项,当时,仍是数列中的项,则的范围是________________,数列的所有项和________14.已知圆的半径为3,,为该圆的两条切线,为切点,则的最小值为___________.15.命题为假命题,则实数的取值范围为_____________.16.两姐妹同时推销某一商品,现抽取他们其中8天的销售量(单位:台),得到的茎叶图如图所示,已知妹妹的销售量的平均数为14,姐姐的销售量的中位数比妹妹的销售量的众数大2,则的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是等差数列,,.(1)求的通项公式;(2)若数列是公比为的等比数列,,求数列的前项和.18.(12分)已知函数(1)当时,求的单调递减区间;(2)若关于的方程恰有两个不等实根,求实数的取值范围19.(12分)设数列的前项和为,且.(1)求数列的通项公式;(2)记,数列的前项和为,求不等式的解集.20.(12分)如图,多面体中,平面平面,,四边形为平行四边形.(1)证明:;(2)若,求二面角的余弦值.21.(12分)如图,四边形为矩形,,,为的中点,与交于点,平面.(1)若,求与所成角的余弦值;(2)若,求直线与平面所成角的正弦值.22.(10分)如图甲,在直角三角形中,已知,,,D,E分别是的中点.将沿折起,使点A到达点的位置,且,连接,得到如图乙所示的四棱锥,M为线段上一点.(1)证明:平面平面;(2)过B,C,M三点的平面与线段A'E相交于点N,从下列三个条件中选择一个作为已知条件,求直线DN与平面A'BC所成角的正弦值.①;②直线与所成角的大小为;③三棱锥的体积是三棱锥体积的注:如果选择多个条件分别解答,按第一个解答计分.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据已知条件,利用累加法得到的通项公式,从而得到.【详解】由,得,所以,所以.故选:A.2、C【解析】不等式性质相关的题型,可以通过举反例的方式判断正误.【详解】若、均为负数,因为,则,故A错.若、,则,故B错.由不等式的性质可知,因为,所以,故C对.若,因为,所以,故D错.故选:C.3、B【解析】根据a的值和离心率可求得b,从而求得渐近线方程.【详解】由双曲线的离心率为,知,则,即有,故,所以双曲线C的渐近线方程为,即,故选:B.4、C【解析】利用抛物线的定义转化为到准线的距离,即可求得.【详解】抛物线的焦点坐标为,准线方程为,,∴,故选:C.5、D【解析】作出折叠后的正四棱锥,确定线面关系,从而把异面直线的夹角通过平移放到一个平面内求得.【详解】由题知,折叠后的正四棱锥如图所示,易知K为的四等分点,L为的中点,M为的四等分点,,取的中点N,易证,则异面直线AK和LM所成角即直线AK和KN所成角,在中,,,故故选:D6、D【解析】取AC的中点O,建立如图所示的空间直角坐标系,根据点到线距离的向量求法和投影的定义计算即可.【详解】由题意知,,取AC的中点O,则,建立如图所示的空间直角坐标系,则,所以,所以在上的投影的长度为,故点C到直线距离为:.故选:D7、B【解析】首先根据二项展开式的各项系数和,求得,再根据二项展开式的通项为,求得,再求二项展开式中的系数.【详解】因为二项展开式的各项系数和,所以,又二项展开式的通项为=,,所以二项展开式中的系数为.答案选择B【点睛】本题考查二项式展开系数、通项等公式,属于基础题8、A【解析】利用等比数列的性质及对数的运算性质求解.【详解】由题有,则=5.故选:A9、B【解析】由题意及双曲线的定义可得,的值,进而可得A不正确,计算可判断B正确,再求出,的关系可得C不正确,求出,的关系,进而求出渐近线的方程,可得D不正确【详解】因为,又由题意及双曲线的定义可得:,则,,所以A不正确;因为在以为直径的圆上,所以,所以,所以B正确;在△中,由勾股定理可得,即,所以离心率,所以C不正确;由C的分析可知:,故,所以渐近线的方程为,即,所以D不正确;故选:B10、C【解析】根据空间向量垂直的性质进行求解即可.【详解】因为,所以,因此有.故选:C11、C【解析】根据不等式解集为,得方程的解为或,且,利用韦达定理即可将用表示,即可判断各选项的正误.【详解】解:因为不等式解集为,所以方程的解为或,且,所以,所以,所以,故ABD错误;,故C正确.故选:C.12、D【解析】求出抛物线的准线方程,可得出点的坐标,利用抛物线的定义可求得点的坐标,再利用两点间的距离公式可求得结果.【详解】易知抛物线焦点为,准线方程为,可得准线与轴的交点,设点,由抛物线的性质,,可得,所以,,解得,即点,所以.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、①.②.1011【解析】根据题意得到,得到,,,,进而得到,从而即可求得的值.【详解】由题意,递增数列共有项,各项均不为零,且,所以,所以的范围是,因为时,仍是数列中的项,即,且上述的每一项均在数列中,所以,,,,即,所以,所以.故答案为:;.14、【解析】设(),,则,,,根据数量积的定义和余弦的二倍角公式结合基本不等式即可求解详解】如图所示,设(),,则,,,,当且仅当即时等号成立,∴的最小值是.故答案为:15、【解析】依据题意列出关于实数的不等式,即可求得实数的取值范围.【详解】命题为假命题,则为真命题则判别式,解之得故答案为:16、13【解析】先根据妹妹的销售量的平均数为14,求得y,进而得到其众数,然后再根据姐姐的销售量的中位数比妹妹的销售量的众数大2,得到姐姐的销售量的中位数.【详解】因为妹妹的销售量的平均数为14,所以,解得,由茎叶图知:妹妹的销售量的众数是14,因为姐姐的销售量的中位数比妹妹的销售量的众数大2,所以姐姐的销售量的中位数是16,所以,解得,所以,故答案为:13三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由题意得解方程组求出,从而可求出数列的通项公式,(2)因为是公比为的等比数列,又,,所以,从而可得,然后利用分组求和法求解即可【小问1详解】设等差数列的公差为.由题意得解得,.所以.【小问2详解】因为是公比为的等比数列,又,,所以,所以.所以.18、(1);(2)【解析】(1)求出导数,令,得出变化情况表,即可得出单调区间;(2)分离参数得,构造函数,利用导数讨论单调性,根据与恰有两个不同交点即可得出.【详解】(1)当时,函数,则令,得,,当x变化时,的变化情况如下表:1+00+↗极大值↘极小值↗∴在上单调递减(2)依题意,即.则令,则当时,,故单调递增,且;当时,,故单调递减,且∴函数在处取得最大值故要使与恰有两个不同的交点,只需∴实数a的取值范围是【点睛】关键点睛:本题考查根据方程根的个数求参数,解题的关键是参数分离,构造函数利用导数讨论单调性,根据函数交点个数判断.19、(1)(2)【解析】(1)利用与的关系求解即可;(2)首先利用裂项求和得到,从而得到,再解不等式即可.【小问1详解】令,则,当时,,当时,也符合上式,即数列的通项公式为.【小问2详解】由(1)得,则,所以故可化为:,故,故不等式的解集为.20、(1)证明见解析(2)【解析】(1)先通过平面平面得到,再结合,可得平面,进而可得结论;(2)取的中点,的中点,连接,,以点为坐标原点,分别以,,为轴,轴,轴建立空间直角坐标系,求出平面的一个法向量以及平面的一个法向量,求这两个法向量的夹角即可得结果.【详解】解:(1)因为平面平面,交线为,又,所以平面,,又,,则平面,平面,所以,;(2)取的中点,的中点,连接,,则平面,平面;以点坐标原点,分别以,,为轴,轴,轴建立空间直角坐标系如图所示,已知,则,,,,,,则,,设平面的一个法向量,由得令,则,,即;平面的一个法向量为;.所以二面角的余弦值为.【点睛】本题考查线线垂直的证明以及空间向量发求面面角,考查学生计算能力以及空间想象能力,是中档题.21、(1)(2)【解析】(1)以为原点,、所在的直线为、轴,以过点垂直于面的直线为轴,建立空间直角坐标系,利用空间向量法可求得与所成角的余弦值;(2)计算出平面的法向量,利用空间向量法可求得直线与平面所成角的正弦值.【小问1详解】解:如图,以为原点,、所在的直线为、轴,以过点垂直于面的直线为轴,建立空间直角坐标系,,,则,则,故,因为平面,平面,则,若,则,故、、、,则,,.因此,若,则与所成角的余弦值为.【小问2详解】解:若,则、,,,,设平面的法向量为,则,取,可得,,所以直线与平面所成角的正弦值为.22、(1)证明见解析(2)【解析】(1)由线面垂直的判定定理及面面垂直的判定定理可得证;(2)分别选①,②,③可求得为的中点,再以为坐标原点,向量的方向分别为轴,轴,轴建立空间直角坐标系.利用空间向量求得所求的线面角.【小问1详解】分别为的中点,.,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论