版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页山东省滨州市阳信县2025届九年级数学第一学期开学调研试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列命题中,原命题和逆命题都是真命题的个数是()①两条对角线互相平分的四边形是平行四边形;②两条对角线相等的四边形是矩形;③菱形的两条对角线成互相垂直平分;④两条对角线互相垂直且相等的四边形是正方形.A.4 B.3 C.2 D.12、(4分)在一个不透明的盒子里装有2个红球和1个黄球,每个球除颜色外都相同,从中任意摸出2个球。下列事件中,不可能事件是()A.摸出的2个球都是红球B.摸出的2个球都是黄球C.摸出的2个球中有一个是红球D.摸出的2个球中有一个是黄球3、(4分)化简8aA.4aa B.-4aa C.2a4、(4分)如图,在矩形ABCD中,对角线AC和BD相交于点O,点E,F分别是DO,AO的中点.若AB=43,BC=4,则ΔOEF的周长为(A.6 B.63 C.2+35、(4分)如图,在矩形ABCD中,E为AD的中点,∠BED的平分线交BC于点F,若AB=3,BC=8,则FC的长度为()A.6 B.5 C.4 D.36、(4分)用一长一短的两根木棒,在它们的中心处固定一个小螺钉,做成一个可转动的叉形架,四个顶点用橡皮筋连成一个四边形,转动木条,这个四边形变成菱形时,两根木棒所成角的度数是()A.90° B.60° C.45° D.30°7、(4分)下列多项式中,可以提取公因式的是()A.ab+cd B.mn+m2C.x2-y2 D.x2+2xy+y28、(4分)如图,在正方形ABCD中,AB=10,点E、F是正方形内两点,AE=FC=6,BE=DF=8,则EF的长为()A. B. C. D.3二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)计算()•()的结果是_____.10、(4分)已知:一组数据,,,,的平均数是22,方差是13,那么另一组数据,,,,的方差是__________.11、(4分)不等式的正整数解是______.12、(4分)已知方程组的解为,则一次函数y=﹣x+1和y=2x﹣2的图象的交点坐标为_____.13、(4分)八年级(3)班共有学生50人,如图是该班一次信息技术模拟测试成绩的频数分布直方图(满分为50分,成绩均为整数),若不低于30分为合格,则该班此次成绩达到合格的同学占全班人数的百分比是__________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,是正方形的边上的动点,是边延长线上的一点,且,,设,.(1)当是等边三角形时,求的长;(2)求与的函数解析式,并写出它的定义域;(3)把沿着直线翻折,点落在点处,试探索:能否为等腰三角形?如果能,请求出的长;如果不能,请说明理由.15、(8分)在平面直角坐标系中,直线与轴、轴分别相交于A、B两点,求AB的长及△OAB的面积.16、(8分)如图,正方形ABCD,点P为射线DC上的一个动点,点Q为AB的中点,连接PQ,DQ,过点P作PE⊥DQ于点E.(1)请找出图中一对相似三角形,并证明;(2)若AB=4,以点P,E,Q为顶点的三角形与△ADQ相似,试求出DP的长.17、(10分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=1.(1)求证:方程有两个不相等的实数根;(2)若方程有一个根是5,求k的值.18、(10分)(1)若k是正整数,关于x的分式方程的解为非负数,求k的值;(2)若关于x的分式方程总无解,求a的值.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图所示,将长方形纸片ABCD进行折叠,∠FEH=70°,则∠BHE=_______.20、(4分)如图,在中,角是边上的一点,作垂直,垂直,垂足分别为,则的最小值是______.21、(4分)如图,Rt△OAB的两直角边OA、OB分别在x轴和y轴上,,,将△OAB绕O点顺时针旋转90°得到△OCD,直线AC、BD交于点E.点M为直线BD上的动点,点N为x轴上的点,若以A,C,M,N四点为顶点的四边形是平行四边,则符合条件的点M的坐标为______.22、(4分)计算:(﹣1)0+(﹣)﹣2=_____.23、(4分)如图所示,在平行四边形ABCD中,DE平分∠ADC交BC于E,AF⊥DE,垂足为F,已知∠DAF=50°,则∠C的度数是____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在正方形ABCD中,AB=6,点E在边CD上,且CE=2DE,将△ADE沿AE对折得到△AFE,延长EF交边BC于点G,连结AG、CF.(1)求证:△ABG≌△AFG;(2)判断BG与CG的数量关系,并证明你的结论;(3)作FH⊥CG于点H,求GH的长.25、(10分)如图,在正方形ABCD中,点E是边BC的中点,直线EF交正方形外角的平分线于点F,交DC于点G,且AE⊥EF.(1)当AB=2时,求GC的长;(2)求证:AE=EF.26、(12分)课堂上老师讲解了比较和的方法,观察发现11-10=15-14=1,于是比较这两个数的倒数:,,因为>,所以>,则有<.请你设计一种方法比较与的大小.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
分别写出各个命题的逆命题,然后对原命题和逆命题分别进行判断即可.【详解】解:①两条对角线互相平分的四边形是平行四边形,为真命题;其逆命题为平行四边形的对角线互相平分,为真命题;
②两条对角线相等的四边形是矩形,为假命题;逆命题为:矩形的对角线相等,是真命题;
③菱形的两条对角线互相垂直平分,为真命题;逆命题为:对角线互相垂直平分的四边形是菱形,为真命题;
④两条对角线互相垂直且相等的四边形是正方形,为假命题;其逆命题为:正方形的对角线互相垂直且相等,为真命题,
故选:C.本题考查命题与定理的知识,解题的关键是能够写出该命题的逆命题.2、B【解析】
直接利用小球个数进而得出不可能事件.【详解】解:在一个不透明的盒子里装有2个红球和1个黄球,每个球外颜色都相同,从中任意摸出两个球,下列事件中,不可能事件是摸出的2个黄球.
故选:B.此题主要考查了随机事件,正确把握随机事件、不可能事件的定义是解题关键.3、C【解析】
根据二次根式的性质进行化简即可.【详解】8∵a≥1,∴原式=2a2a故选C.本题主要考查二次根式的性质、化简,关键在于根据已知推出a≥1.4、A【解析】
由矩形的性质和勾股定理得出AC,再证明EF是△OAD的中位线,由中位线定理得出OE=OF=12OA,即可求出△OEF【详解】解:∵四边形ABCD是矩形,∴∠ABC=∵点E、F分别是DO、AO的中点,∴EF是△OAD的中位线,OE=OF=12OA=2∴EF=12AD=2∴△OEF的周长=OE+OF+EF=1.故选:A.本题考查了矩形的性质、勾股定理、三角形中位线定理、三角形周长的计算;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.5、D【解析】
根据矩形点的性质可得AD∥BC,AD=BC,再求出AE的长度,再根据勾股定理列式求出BE的长,然后根据角平分线的定义求出∠BEF=∠DEF,根据两直线平行,内错角相等求出∠BFE=∠DEF,再求出BEF=∠BFE,根据等角对等边可得BE=BF,然后根据FC=BC-BF代入数据计算即可得解.【详解】解:在矩形ABCD中,AD∥BC,AD=BC=8,∵E为AD的中点,∴AE=AD=×8=4,在Rt△ABE中,,∵EF是∠BED的角平分线,∴∠BEF=∠DEF,∵AD∥BC,∴∠BFE=∠DEF,∴BEF=∠BFE,∴BE=BF,∴FC=BC-BF=8-5=1.故选:D.本题考查了矩形的性质,勾股定理的应用,两直线平行,内错角相等的性质,等角对等边的性质,熟记各性质是解题的关键.6、A【解析】
根据菱形的判定方法即可解决问题;【详解】解:如图,∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∴当AC⊥BD时,四边形ABCD是菱形,故选:A.本题考查菱形的判定,解题的关键是熟练掌握类型的判定方法,属于中考常考题型.7、B【解析】
直接利用提取公因式法分解因式的步骤分析得出答案.【详解】解:A.ab+cd,没有公因式,故此选项错误;B.mn+m2=m(n+m),故此选项正确;C.x2﹣y2,没有公因式,故此选项错误;D.x2+2xy+y2,没有公因式,故此选项错误.故选B.本题主要考查了提取公因式法分解因式,正确找出公因式是解题的关键.8、B【解析】
延长AE交DF于G,再根据全等三角形的判定得出△AGD与△ABE全等,得出AG=BE=8,由AE=6,得出EG=2,同理得出GF=2,再根据勾股定理得出EF的长.【详解】延长AE交DF于G,如图:∵AB=10,AE=6,BE=8,∴△ABE是直角三角形,∴同理可得△DFC是直角三角形,可得△AGD是直角三角形∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE,在△AGD和△BAE中,,∴△AGD≌△BAE(ASA),∴AG=BE=8,DG=AE=6,∴EG=2,同理可得:GF=2,∴EF=,故选B.此题考查正方形的性质、勾股定理,解题关键在于作辅助线.二、填空题(本大题共5个小题,每小题4分,共20分)9、-2【解析】
利用平方差公式进行展开计算即可得.【详解】==-2,故答案为:-2.本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.10、1.【解析】
根据平均数,方差的公式进行计算.【详解】解:依题意,得==22,∴=110,∴3a-2,3b-2,3c-2,3d-2,3e-2的平均数为==×(3×110-2×5)=64,∵数据a,b,c,d,e的方差13,S2=[(a-22)2+(b-22)2+(c-22)2+(d-22)2+(e-22)2]=13,∴数据3a-2,3b-2,3c-2,3d-2,3e-2方差S′2=[(3a-2-64)2+(3b-2-64)2+(3c-2-64)2+(3d-2-64)2+(3e-2-64)2]=[(a-22)2+(b-22)2+(c-22)2+(d-22)2+(e-22)2]×9=13×9=1.故答案为:1.本题考查了平均数、方差的计算.关键是熟悉计算公式,会将所求式子变形,再整体代入.11、1和2.【解析】
先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.【详解】去分母得,2(x+4)>3(3x−1)-6,去括号得,2x+8>9x-3-6,移项得,2x−9x>-3-6−8,合并同类项得,−7x>−17,把x的系数化为1得,x<.故它的正整数解为:1和2.此题考查解一元一次不等式,一元一次不等式的整数解,解题关键在于掌握运算法则12、(1,0)【解析】试题分析:二元一次方程组是两个一次函数变形得到的,所以二元一次方程组的解,就是函数图象的交点坐标试题解析:∵方程组的解为,∴一次函数y=-x+1和y=2x-2的图象的交点坐标为(1,0).考点:一次函数与二元一次方程(组).13、70%【解析】
利用合格的人数即50-10-5=35人,除以总人数即可求得.【详解】解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=70%.
故答案是:70%.本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.三、解答题(本大题共5个小题,共48分)14、(1);(1);(3)答案见解析.【解析】
(1)当△BEF是等边三角形时,有∠ABE=∠ABC-∠EBC=90°-60°=30°,则可解Rt△ABE,求得BF即BE的长.(1)作EG⊥BF,垂足为点G,则四边形AEGB是矩形,在Rt△EGF中,由勾股定理知,EF1=(BF-BG)1+EG1.即y1=(y-x)1+111.故可求得y与x的关系.(3)当把△ABE沿着直线BE翻折,点A落在点A'处,应有∠BA'F=∠BA'E=∠A=90°,若△A'BF成为等腰三角形,必须使A'B=A'F=AB=11,有FA′=EF-A′E=y-x=11,故可由(1)得到的y与x的关系式建立方程组求得AE的值.【详解】解:(1)当是等边三角形时,,∵,∴,∴;(1)作,垂足为点,根据题意,得,,.∴.∴所求的函数解析式为;(3)∵,∴点落在上,∴,,∴要使成为等腰三角形,必须使.而,,∴,由(1)关系式可得:,整理得,解得,经检验:都原方程的根,但不符合题意,舍去,所以当时,为等要三角形.本题利用了等边三角形和正方形、矩形、等腰三角形的性质,勾股定理求解.15、,1【解析】
根据两点距离公式、三角形的面积公式求解即可.【详解】解:令y=0,解得令x=0,解得∴A、B两点坐标为(3,0)、(0,6)∴∴故答案为:,1.本题考查了直线解析式的几何问题,掌握两点距离公式、三角形的面积公式是解题的关键.16、(1)△DPE∽△QDA,证明见解析;(2)DP=2或5【解析】
(1)由∠ADC=∠DEP=∠A=90可证明△ADQ∽△EPD;(2)若以点P,E,Q为顶点的三角形与△ADQ相似,有两种情况,当△ADQ∽△EPQ时,设EQ=x,则EP=2x,则DE=2−x,由△ADQ∽△EPD可得,可求出x的值,则DP可求出;同理当△ADQ∽△EQP时,设EQ=2a,则EP=a,可得,可求出a的值,则DP可求.【详解】(1)△ADQ∽△EPD,证明如下:∵PE⊥DQ,∴∠DEP=∠A=90,∵∠ADC=90,∴∠ADQ+∠EDP=90,∠EDP+∠DPE=90,∴∠ADQ=∠DPE,∴△ADQ∽△EPD;(2)∵AB=4,点Q为AB的中点,∴AQ=BQ=2,∴DQ=,∵∠PEQ=∠A=90,∴若以点P,E,Q为顶点的三角形与△ADQ相似,有两种情况,①当△ADQ∽△EPQ时,,设EQ=x,则EP=2x,则DE=2−x,由(1)知△ADQ∽△EPD,∴,∴,∴x=∴DP==5;②当△ADQ∽△EQP时,设EQ=2a,则EP=a,同理可得,∴a=,DP=.综合以上可得DP长为2或5,使得以点P,E,Q为顶点的三角形与△ADQ相似.本题考查了相似三角形的判定与性质,勾股定理,正方形的性质,熟练掌握相似三角形的判定与性质是解题的关键.17、(1)证明见解析;(2)k=4或k=2.【解析】
(1)根据根的判别式为1,得出方程有两个不相等的实数根;(2)将x=2代入方程得出关于k的一元二次方程,从而得出k的值.【详解】(1)∵△===,∴方程有两个不相等的实数根;(2)∵方程有一个根为2,∴,,∴,.本题考查了一元二次方程根的判别式,因式分解法解一元二次方程,熟练掌握相关知识是解题的关键.18、(1);(2)的值-1,2.【解析】
(1)分式方程去分母转化为整式方程,表示出整式方程的解,由解为非负数求出k的范围,即可确定出正整数k的值;(2)分式方程去分母转化为整式方程,分类讨论a的值,使分式方程无解即可.【详解】解:(1)由得:,化简得:,因为x是非负数,所以,即,又是正整数,所以;(2)去分母得:,即,若,显然方程无解;若,,当时,不存在;当时,,综合上述:的值为-1,2.此题考查了分式方程的解,始终注意分式分母不为0这个条件.一、填空题(本大题共5个小题,每小题4分,共20分)19、70°【解析】
由折叠的性质可得∠DEH=∠FEH=70°,再根据两直线平行,内错角相等即可求得答案.【详解】由题意得∠DEH=∠FEH=70°,∵AD//BC,∴∠BHE=∠DEH=70°,故答案为:70°.本题考查了折叠的性质,平行线的性质,熟练掌握折叠的性质以及平行线的性质是解题的关键.20、【解析】
根据已知条件得出四边形AEPF为矩形,得出EF=AP,要使EF最小,只要AP最小即可,根据垂线段最短得出即可.【详解】连接AP,四边形AFPE是矩形,要使EF最小,只要AP最小即可,过点A作于P,此时AP最小,在直角三角形中,由勾股定理得:BC=5,由三角形面积公式得:,即,故答案为:.本题是矩形的判定与性质和直角三角形结合考查的题型,找出与EF相等的线段,结合垂线段最短的性质是解题的关键.21、或.【解析】
由B、D坐标可求得直线BD的解析式,当M点在x轴上方时,则有CM∥AN,则可求出点M的坐标,代入直线BD解析式可求得M点的坐标,当M点在x轴下方时,同理可求得点M点的纵坐标,则可求得M点的坐标;【详解】∵,,∴OA=2,OB=4,∵将△OAB绕O点顺时针旋转90°得到△OCD,∴OC=OA=2,OD=OB=4,AB=CD,可知,,设直线BD的解析式为,把B、D两点的坐标代入得:,解得,∴直线BD的解析式为,当M点在x轴上方时,则有CM∥AN,即CM∥x轴,∴点M到x轴的距离等于点C到x轴的距离,∴M点的纵坐标为2,在中,令,可得,∴,当M点在x轴下方时,M点的纵坐标为-2,在中,令,可得,∴,综上所述,M的坐标为或.本题主要考查了一次函数的综合,准确利用知识点是解题的关键.22、5【解析】
按顺序分别进行0次幂运算、负指数幂运算,然后再进行加法运算即可.【详解】(﹣1)0+(﹣)﹣2=1+4=5,故答案为:5.本题考查了实数的运算,涉及了0指数幂、负整数指数幂,熟练掌握各运算的运算法则是解题的关键.23、100°.【解析】
根据直角三角形两锐角互余,平行四边形的性质即可解决问题.【详解】∵AF⊥DE,∴∠AFD=90°,∵∠DAF=50°,∴∠ADF=90°﹣50°=40°,∵DE平分∠ADC,∴∠ADC=2∠ADF=80°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠C+∠ADC=180°,∴∠C=100°故答案为100°.本题考查平行四边形的性质、直角三角形的性质、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(2)BG=CG;(3)GH=.【解析】
(1)先计算出DE=2,EC=4,再根据折叠的性质AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,然后根据“HL”可证明Rt△ABG≌Rt△AFG;(2)由全等性质得GB=GF、∠BAG=∠FAG,从而知∠GAE=∠BAD=45°、GE=GF+EF=BG+DE;设BG=x,则GF=x,CG=BC﹣BG=6﹣x,在Rt△CGE中,根据勾股定理得(6﹣x)2+42=(x+2)2,解之可得BG=CG=3;(3)由(2)中结果得出GF=3、GE=5,证△FHG∽△ECG得=,代入计算可得.【详解】(1)∵正方形ABCD的边长为6,CE=2DE,∴DE=2,EC=4,∵把△ADE沿AE折叠使△ADE落在△AFE的位置,∴AF=AD=6,EF=ED=2,∠AFE=∠D=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 4年级上册数学人教版说课稿7篇
- 网页制作案例教程HTML5+CSS3课程设计
- 《数理经济学》课程教学大纲
- 复习真题卷04 第6-7单元(解析版)
- DBJ51-T 198-2022 四川省既有民用建筑结构安全隐患排查技术标准
- 2009年高考语文试卷(全国Ⅱ卷)(解析卷)
- 建筑工程行业工程测量培训体会
- 通信行业客服工作总结
- 《色彩的渐变》课件
- 有关医院的实习报告三篇
- YY 9706.210-2021医用电气设备第2-10部分:神经和肌肉刺激器的基本安全和基本性能专用要求
- GB/T 5130-1997电气用热固性树脂工业硬质层压板试验方法
- FZ/T 01041-2014绒毛织物绒毛长度和绒毛高度的测定
- 《经济学导论》考试复习题库(含答案)
- 农田水利渠道灌溉与排水课件
- 六棱块护坡施工方案
- 机械制图课件(完整版)
- 夸美纽斯-大教学论-文本细读
- 《行政组织学小抄》word版
- 日立多联机系统调试培训教材
- (完整版)环境科学与工程-专业英语词汇必备(免费)
评论
0/150
提交评论