版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市2020年初中学业水平暨高中招生考试
数学试题(A卷)
一、选择题
1.下列各数中,最小的数是()
A.-3B.0C.1D.2
2.下列图形是轴对称图形的是()
C.
o
3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000
用科学记数法表示为()
A.26xl03B.2.6xlO3C.2.6xlO4D.
0.26xlO5
4.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个
图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第
⑤个图案中黑色三角形的个数为()
▲
▲▲▲•••
▲▲▲▲▲
②③
A.10B.15C.18D.21
5.如图,AB是的切线,A切点,连接OA,OB,若々=20。,则NAQB的度数为()
A.40°B.50°C.60°D.70°
6.下列计算中,正确的是()
A.夜+百=6B.2+0=20C.夜x6=遍D.
2y/3-2=y/3
7.解一元一次方程1(x+l)=l-:x时,去分母正确的是()
23
A,3。+1)=1—2%B.2(x+l)=l-3x
C,2(x+l)=6-3xD,3(x+l)=6-2x
8.如图,在平面直角坐标系中,AABC的顶点坐标分别是A(l,2),8(1,1),C(3,l),以原
点为位似中心,在原点的同侧画△£)石厂,使△DEF与AABC成位似图形,且相似比为2:
1,则线段。厂的长度为()
A.亚B.2C.4D.26
9.如图,在距某居民楼AB楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的
坡度(或坡比)z=1:0.75,山坡坡底C点到坡顶。点的距离CD=45m,在坡顶。点处测
得居民楼楼顶A点的仰角为28。,居民楼48与山坡CO的剖面在同一平面内,则居民楼AB
的高度约为()
(参考数据:sin28。=0.47,cos28°«0.88,tan28°®0.53)
A76.9mB.82.1mC.94.8mD.112.6m
Qi,c
----<x+3
10.若关于x的一元一次不等式结J2的解集为%<";且关于丁的分式方程
x<a
=+型4=1有正整数解,则所有满足条件的整数。的值之积是()
y-2y-2
A.7B.-14C.28D.-56
11.如图,三角形纸片ABC,点。是5C边上一点,连接AD,把△钿£)沿着AQ翻折,得
到OE与AC交于点G,连接BE交AO于点F.若。G=GE,AF=3,BF=2,
△A£)G的面积为2,则点尸到BC的距离为()
12.如图,在平面直角坐标系中,矩形ABCQ对角线AC的中点与坐标原点重合,点E是
x轴上一点,连接AE.若AD平分NQ4E,反比例函数>=±(4>0,》>0)的图象经过AE
x
上的两点A,F,且AF=EF,AABE的面积为18,则%的值为()
二、填空题
13.计算:(%-1)°+|-2|=.
14.一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是
15.现有四张正面分别标有数字-1,1,2,3的不透明卡片,它们除数字外其余完全相同,
将它们背而面朝上洗均匀,随机抽取一张,记下数字后也回,背面朝上洗均匀,再随机抽取
一张记下数字,前后两次抽取的数字分别记为,“,",则点P(〃?,ri')在第二象限的概率为
16.如图,在边长为2的正方形ABC。中,对角线AC的中点为0,分别以点A,C为圆心,
以A0的长为半径画弧,分别与正方形的边相交.则图中的阴影部分的面积为
.(结果保留))
17.A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停
止,在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止,两车之
间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CZ)—£>E—EE所
示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.
18.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊
(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:
5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加
27
的营业额占总增加的营业额的一,则摆摊的营业额将达到7月份总营业额的一,为使堂食、
520
外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比
是.
三、解答题
19.计算:(1)(x+y)2+x(x-2y);(2)[1---三)+9c.
20.为了解学生掌握垃圾分类知识的情况,增强学生环保意识,某学校举行了“垃圾分类人
人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分
10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.
七年级20名学生的测试成绩为:
7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,1,10,6.
七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如
下表所示:
年级平均数众数中位数8分及以上人数所占百分比
七年级7.5a745%
八年级7.58bC
八年级20名学生的测试成绩条形统计图如图:
八年级抽取的学生测试成绩条形统计图
(1)直接写出上述表中的a,b,c的值;
(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说
明理由(写出一条理由即可);
(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格
的学生人数是多少?
21.如图,在平行四边形ABC。中,对角线相交于点O,分别过点4C作AE_L3£),
CFA.BD,垂足分别为E,F.4c平分NZME.
(1)若44OE=50。,求N4CB的度数;
(2)求证:AE=CF.
22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究
函数性质的过程.以下是我们研究函数y=〒二性质及其应用的部分过程,请按要求完成
JT+1
下列各小题.
(1)请把下表才充完整,并在图中才全该函数图象;
X-5-4-3-2-1012345
6x15_24_12122415
y~x2+\-303
"13"17~~5T1713
(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在相应的括号内打
错误的在相应的括号内打“x”;
①该函数图象是轴对称图形,它的对称轴为y轴;()
②该函数在自变量取值范围内,有最大值和最小值,当x=l时,函数取得最大值3;当
%=—1时,函数取得最小值一3;()
③当x<T或x>l时,),随x的增大而减小;当-时,y随x的增大而增大;()
(3)已知函数y=2x-l图象如图所示,结合你所画的函数图象,直接写出不等式
6x
〒二>2x-l的解集(保留1位小数,误差不超过0.2).
x-+\
23.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,
现在我们利用整数的除法运算来研究一种数——“差一数
定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差
一数”.
例如:14+5=2……4,14+3=4……2,所以14是“差一数”;
19+5=3……4,但19+3=6……1,所以19不是“差一数”.
(1)判断49和74是否为“差一数”?请说明理由;
(2)求大于300且小于400的所有“差一数”.
24.为响应“把中国人饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产
量,某农业科技小组对A、B两个玉米品种进行实验种植对比研究.去年4、8两个品种各
种植了10亩.收获后4、B两个品种的售价均为2.4元/依,且B品种的平均亩产量比4品
种高100千克,A、B两个品种全部售出后总收入为21600元.
(1)求A、B两个品种去年平均亩产量分别是多少千克?
(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、
B两个品种平均亩产量将在去年的基础上分别增加“%和2〃%.由于B品种深受市场欢迎,
预计每千克售价将在去年的基础上上涨。%,而A品种的售价保持不变,A、3两个品种全
20
部售出后总收入将增加求。的值.
9
25.如图,在平面直角坐标系中,已知抛物线ynY+Zzr+c与直线AB相交于A,B两点,
其中A(-3,T),
(1)求该抛物线的函数表达式;
(2)点P为直线AB下方抛物线上的任意一点,连接PA,PB,求△PA3面积的最大值;
(3)将该抛物线向右平移2个单位长度得到抛物线y=4炉+4x+q(qH0),平移后的
抛物线与原抛物线相交于点C,点。为原抛物线对称轴上的一点,在平面直角坐标系中是
否存在点E,使以点B,C,D,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标;
若不存在,请说明理由.
26.如图,在用AABC中,ABAC=90°,A8=AC,点。是BC边上一动点,连接AO,
把AD绕点A逆时针旋转90。,得到AE,连接CE,OE.点F是QE的中点,连接CF.
(1)求证:CF=—AD-.
2
(2)如图2所示,在点。运动的过程中,当2c。时,分别延长CF,BA,相交于点
G,猜想AG与8c存在的数量关系,并证明你猜想的结论;
(3)在点。运动的过程中,在线段A。上存在一点P,使Q4+PB+PC的值最小.当
Q4+PB+PC的值取得最小值时,AP的长为山,请直接用含〃?的式子表示CE的长.
重庆市2020年初中学业水平暨高中招生考试
数学试题(A卷)
一、选择题
1.下列各数中,最小的数是()
A.-3B.OC.1D.2
【答案】A
【解析】
【分析】有理数的大小比较法则:正数大于0,负数小于0,正数大于一切负数;两个负数,
绝对值大的反而小.
【详解】•••一3<0<1<2,
.••最小的数是-3,
故选:A.
【点睛】本题考查有理数的大小比较,属于基础应用题,只需熟练掌握有理数的大小比较法
则,即可完成.
2.下列图形是轴对称图形的是()
A©BQcG
O
【答案】A
【解析】
【分析】根据轴对称图形的概念对各选项分析判断即可得解.
【详解】解:A、是轴对称图形,故本选项正确;
B、不是轴对称图形,故本选项错误;
C、不是轴对称图形,故本选项错误;
D、不是轴对称图形,故本选项错误;
故选:A.
【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠
后可重合.
3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000
用科学记数法表示为()
A.26xl()3B.2.6xlO3C.2.6xlO4D.
0.26xlO5
【答案】C
【解析】
【分析】科学记数法的表示形式为axion的形式,其中修闾<10,n为整数.确定n的值时,
要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数
绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】26000=2.6xlO4-
故选:C.
【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为axl(r的形式,其中j<|a|
<10,n为整数,表示时关键要正确确定a的值以及n的值.
4.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个
图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第
⑤个图案中黑色三角形的个数为()
▲
▲▲▲…
▲▲▲▲▲▲
①②③
A.10B.15C.181).21
【答案】B
【解析】
【分析】根据前三个图案中黑色三角形的个数得出第n个图案中黑色三角形的个数为
1+2+3+4+……+n,据此可得第⑤个图案中黑色三角形的个数.
【详解】解:•.•第①个图案中黑色三角形的个数为1,
第②个图案中黑色三角形的个数3=1+2,
第③个图案中黑色三角形的个数6=1+2+3,
第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,
故选:B.
【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出规律:第〃个图案
中黑色三角形的个数为1+2+3+4+……+〃.
5.如图,AB是。。的切线,A切点,连接OA,OB,若/8=20。,则NAOB的度数为()
B
A
A.40°B.50°C.60°D.70°
【答案】D
【解析】
【分析】根据切线的性质可得NQ4B=90?,再根据三角形内角和求出NAOB.
【详解】:AB是的切线
ZCM6=90?
々=20°
ZAOB=1800-ZOAB-NB=70°
故选D.
【点睛】本题考查切线的性质,由切线得到直角是解题的关键.
6.下列计算中,正确的是()
A.&+百=6B.2+0=2夜C.72x73=76D.
273-2=73
【答案】C
【解析】
【分析】根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.
【详解】解:A.血与百不是同类二次根式,不能合并,此选项计算错误;
B.2与亚不是同类二次根式,不能合并,此选项计算错误;
C.V2xV3=V2^3=V6«此选项计算正确;
D.26与-2不是同类二次根式,不能合并,此选项错误;
故选:C.
【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的乘法法则与同类
二次根式的概念.
7.解一元一次方程:(x+I)=l-时,去分母正确的是()
23
A.3(x+l)=l-2xB.2(x+l)=l-3x
C.2(x+l)=6-3xD.3(x+l)=6-2x
【答案】D
【解析】
【分析】根据等式的基本性质将方程两边都乘以6可得答案.
【详解】解:方程两边都乘以6,得:
3(x+l)=6-lx,
故选:D.
【点睛】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的
基本性质.
8.如图,在平面直角坐标系中,AABC的顶点坐标分别是A(l,2),C(3,l),以原
点为位似中心,在原点的同侧画△£)防,使△£)石厂与△A6c成位似图形,且相似比为2:
【答案】D
【解析】
【分析】把A、C的横纵坐标都乘以2得到D、F的坐标,然后利用两点间的距离公式计算
线段DF的长.
【详解】解:;以原点为位似中心,在原点的同侧画ADEF,使4DEF与AABC成位似图
形,且相似比为2:1,
而A(1,2),C(3,1),
AD(2,4),F(6,2),
;•DF:^(2-6)2+(4-2)2=2石,
故选:D.
【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,
相似比为k,那么位似图形对应点的坐标的比等于k或-k.
9.如图,在距某居民楼4B楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的
坡度(或坡比)/=1:0.75,山坡坡底C点到坡顶。点的距离CD=45m,在坡顶。点处测
得居民楼楼顶A点的仰角为28。,居民楼AB与山坡CO的剖面在同一平面内,则居民楼A8
的高度约为()
(参考数据:sin28°«0.47,cos28。=0.88,tan28°«0.53)
A.76.9mB.82.1mC.94.8mD.112.6m
【答案】B
【解析】
【分析】构造直角三角形,利用坡比的意义和直角三角形的边角关系,分别计算出Z)E、EC、
BE、DF、AF,进而求出A8.
【详解】解:如图,由题意得,/AOF=28°,C£>=45,BC=60,
在RtAOEC中,
•.•山坡CD的坡度i=l:0.75,
•DE1_4
"EC-055-3,
设OE=4x,则EC=3x,
由勾股定理可得CD=5x,
又CD—45,即5x=45,
;.x=9,
EC=3x=27,DE=4x=36=FB,
:.BE=BC+EC=60+27=87=DF,
在RtAACF中,
A尸=tan28°X0/^0.53X87^46.11,
AB=AF+FB=46.11+36Q82.1,
故选:B.
【点睛】本题考查直角三角形的边角关系,掌握坡比的意义和直角三角形的边角关系是正确
计算的前提.
3x-l/
-------<x+3
10.若关于X的一元一次不等式结2的解集为%工。;且关于y的分式方程
x<a
匕^+至4=1有正整数解,则所有满足条件的整数“的值之积是()
y-2y-2
A.7B.-14C.28I).-56
【答案】A
【解析】
【分析】不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为正整数方
程,由分式方程有非负整数解,确定出a的值,求出之和即可.
3r-1
【详解】解:解不等式三一Wx+3,解得烂7,
2
fx<7
.•.不等式组整理的《,
x<a
由解集为x/a,得到把7,
分式方程去分母得:y-a+3y-4=y-2,即3y-2=a,
由y为正整数解且yW2,得到a=l,7,
1x7=7,
故选:A.
【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题
的关键.
11.如图,三角形纸片ABC,点。是8C边上一点,连接AO,把沿着AO翻折,得
到△AED,OE与AC交于点G,连接BE交AO于点尸.若。G=GE,AF=3,BF=2,
△ADG的面积为2,则点F到BC的距离为()
2不„4亚
RD.--------C.---------
55
【答案】B
【解析】
【分析】首先求出的面积.根据三角形的面积公式求出。尸,设点尸到8。的距离为
h,根据求出8。即可解决问题.
22
【详解】解:♦.•OG=GE,
S^ADG=S&AEG=2,
•'•SA4DE=4,
由翻折可知,^ADB^^ADE,BE_LADf
:.S^D=S^ADE=49NBFD=90°,
—(AF+DF)BF=4,
2
—(3+。尸)2=4,
2
:.DF=1,
DB=7BF2+DF2=4+22=6,
设点F到BO的距离为力,
则—•BD・h=—•BF'DF,
22
”述,
5
故选:B.
【点睛】本题考查翻折变换,三角形的面积,勾股定理二次根式的运算等知识,解题的关键
是灵活运用所学知识解决问题,学会利用参数构建方程解决问题.
12.如图,在平面直角坐标系中,矩形ABCO的对角线AC的中点与坐标原点重合,点E是
x轴上一点,连接AE.若AD平分NQ4E,反比例函数y=A(Z>0,x>0)的图象经过AE
X
上的两点A,F,且AF=£/,AA的的面积为18,则人的值为()
A.6B.12C.18D.24
【答案】B
【解析】
【分析】先证明OB〃AE,得出SAABE=SAOAE=18,设A的坐标为(a,-),求出F点的坐
a
标和E点的坐标,可得S.AE=LX3aX±二18,求解即可.
2a
・・•四边形ABCD为矩形,0为对角线,
AAO=OD,
AZODA=ZOAD,
又・・・AD为NDAE的平分线,
AZOAD=ZEAD,
AZEAD=ZODA,
・・・OB〃AE,
VSAABE=18,
SAOAE=18,
设A的坐标为(a,-),
a
VAF=EF,
;.F点的纵坐标为幺,
2a
代入反比例函数解析式可得F点的坐标为(2a,—),
2a
,E点的坐标为(3a,0),
「1、k
SAOAE=~X3aX—=18,
2a
解得k=12,
故选:B.
【点睛】本题考查了反比例函数和几何综合,矩形的性质,平行线的判定,得出
SAABE=SAOAE=18是解题关键.
二、填空题
13.计算:(万一1)°+|—2|=.
【答案】3
【解析】
【分析】根据零指数累及绝对值计算即可.
【详解】(1-1)°+1-2|=1+2=3;
故答案为3.
【点睛】本题比较简单,考查含零指数幕的简单实数混合运算,熟记公式X0=1(XRO)是关
键.
14.一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是
【答案】6
【解析】
【分析】n边形的内角和可以表示成(n-2)“80。,外角和为360。,根据题意列方程求解.
【详解】解:设这个多边形有“条边,则其内角和为(〃—2卜180。,外角和为360。,
(ii-2)•180°=2x360°,
解得,n=6.
故答案:6.
【点睛】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形
的外角和及内角和之间的关系列出方程求边数.
15.现有四张正面分别标有数字-1,1,2,3不透明卡片,它们除数字外其余完全相同,
将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取
一张记下数字,前后两次抽取的数字分别记为,",",则点P(,〃,〃)在第二象限的概率为
3
【答案】—
16
【解析】
【分析】画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点P
(相,n)在第二象限的结果数,然后根据概率公式求解.
【详解】解:画树状图:
开始
一G
3
共有16种等可能的结果数,其中点尸(m,〃)在第二象限的结果数为3,
3
所以点P(,小〃)在第二象限的概率=工.
16
3
故答案为:
16
【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果〃,
再从中选出符合事件A或8的结果数目如然后利用概率公式计算事件A或事件B的概率.也
考查了点的坐标.
16.如图,在边长为2的正方形ABC。中,对角线AC的中点为。,分别以点A,C为圆心,
以A0的长为半径画弧,分别与正方形的边相交.则图中的阴影部分的面积为
.(结果保留万)
【答案】4—万
【解析】
【分析】根据图形可得S阴影=SAB。-2S扇形,由正方形的性质可求得扇形的半径,利用扇
形面积公式求出扇形的面积,即可求出阴影部分面积.
【详解】由图可知,
S阴影=^ABCD-2s扇形,
^ABCD=2x2=4,
:四边形ABCD是正方形,边长为2,
•••AC=2a>
•.,点O是AC的中点,
.\0A=V21
.<_900万(0)2_万
扇形—360。F
S阴影=SABCD-2s扇形=4-%,
故答案为:4—乃.
【点睛】本题考查了求阴影部分面积,扇形面积公式,正方形的性质,解题的关键是观察图
形得出S阴影=SABCD-2s扇形•
17.A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停
止,在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止,两车之
间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD-DE—E^
示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.
【答案】(4,160)
【解析】
【分析】先根据CD段的求出乙货车的行驶速度,再根据两车的行驶速度分析出点E表示的
意义,由此即可得出答案.
【详解】设乙货车的行驶速度为必加/〃
由题意可知,图中的点D表示的是甲、乙货车相遇
•••点C的坐标是(0,240),点D的坐标是(2.4,0)
,此时甲、乙货车行驶的时间为2.4/z,甲货车行驶的距离为40x2.4=96(析?),乙货车行
驶的距离为240-96=1443〃)
/.a=1442.4=60(km/h)
乙货车从B地前往A地所需时间为240+60=4(〃)
由此可知,图中点E表示的是乙货车行驶至A地,EF段表示的是乙货车停止后,甲货车继
续行驶至B地
则点E的横坐标为4,纵坐标为在乙货车停止时,甲货车行驶的距离,即40x4=16()
即点E的坐标为(4,160)
故答案为:(4,160).
【点睛】本题考查了一次函数的实际应用,读懂函数图象是解题关键.
18.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊
(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:
5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加
27
的营业额占总增加的营业额的一,则摆摊的营业额将达到7月份总营业额的一,为使堂食、
520
外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比
是.
【答案】"
【解析】
【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求
解即可求得答案.
【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为弘,5k,2k,7
2
月份总增加的营业额为%则7月份摆摊增加的营业额为不如设7月份外卖还需增加的营
业额为X.
7
♦••7月份摆摊的营业额是总营业额的一,且7月份的堂食、外卖营业额之比为8:5,
20
;.7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7,
...设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a,5a,la,
3
3k+-m-x=Sa
5
由题意可知:<5k+x-5a,
2c,r
—m+2k=7a
I5
f,1
k=—a
2
解得:,x=,
2
"2=15。
5
-------------=-2-=11
8。+5。+7。20a8
故答案为:
o
【点睛】本题主要考查了三元一次方程组的应用,根据题意设出相应的未知数,结合题目中
的等量关系列出方程组是解决本题的关键.
三、解答题
力?2-9
19.计算:(1)(x+y)2+x(x-2y);⑵T
"/n2+6/72+9
2
【答案】(1)2x+/;(2)——
m-3
【解析】
【分析】(1)利用完全平方公式和整式乘法展开后合并同类型即可;
(2)先把分子分母因式分解,然后按顺序计算即可;
【详解】(1)解:原式=r+2孙+/+--2xy
=2x2+y2
rn+3-m(“+3)2
(2)解:原式=
帆+3(〃7+3)(机一3)
3(机+3产
=-----------------
m+3("2+3)(m-3)
3
m-3
【点睛】本题考查整式的运算和分式的混合运算,熟记运算法则是解题的关键.
20.为了解学生掌握垃圾分类知识的情况,增强学生环保意识,某学校举行了“垃圾分类人
人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分
10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.
七年级20名学生的测试成绩为:
1,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.
七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如
下表所示:
年级平均数众数中位数8分及以上人数所占百分比
七年级7.5a745%
八年级7.58bC
八年级20名学生的测试成绩条形统计图如图:
八年级抽取的学生测试成绩条形统计图
5678910分数
根据以上信息,解答下列问题:
(1)直接写出上述表中的a,b,c的值;
(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说
明理由(写出一条理由即可);
(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格
的学生人数是多少?
【答案】⑴a=7,h=7.5,c=50%;(2)八年级学生掌握垃圾分类知识较好,理由:
根据以上数据,七、八年级的平均数相同,八年级的众数、中位数、8分及以上人数所占百
分比比七年级的高;(3)估计参加此次测试活动成绩合格的人数有1080人
【解析】
【分析】(1)七年级20名学生的测试成绩的众数找出现次数最多的即可得出a的值,由条
形统计图即可得出八年级抽取的学生的测试成绩的中位数,八年级8分及以上人数除以总人
数20人即可得出c的值;
(2)分别比较七年级和八年级的平均数、众数、中位数、8分及以上人数所占百分比即可
得出结论;
(3)用七八年级的合格总人数除以总人数40人,得到这两个年级测试活动成绩合格的百分
比,再乘以1200即可得出答案.
【详解】解:(1)七年级20名学生的测试成绩的众数是:7,
a=7,
7+8
由条形统计图可得,八年级抽取的学生的测试成绩的中位数是:——=7.5,
2
b-7.5,
八年级8分及以上人数有10人,所占百分比为:50%
."=50%,
(2)八年级学生掌握垃圾分类知识较好,理由:根据以上数据,七、八年级的平均数相同,
八年级的众数、中位数、8分及以上人数所占百分比比七年级的高;
(3)七年级合格人数:18人,
八年级合格人数:18人,
1O11Q
1200x—~100%=1080人,
40
答:估计参加此次测试活动成绩合格的人数有1080人.
【点睛】本题考查了平均数,众数,中位数,条形统计图等知识,熟练掌握平均数的求法,
众数、中位数的概念是解决本题的关键.
21.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点4c作AE_L,
CF±BD,垂足分别为E,F.AC平分NZME.
(1)若NAOE=50。,求NACB的度数;
(2)求证:AE=CF.
【解析】
【分析】(1)利用三角形内角和定理求出NE4O,利用角平分线的定义求出ND4C,再利
用平行线的性质解决问题即可.
(2)证明DAEO@DCFO(A4S)可得结论.
【详解】(1)解:
:.ZAEO^90°,
Q?AOE50?,
\?EAO40?,
•.•C4平分NZME,
\?DAC?EAO40?,
:四边形ABCO是平行四边形,
:.AD//BC,
ZACB=ZDAC=40°,
(2)证明:•.•四边形ABC。是平行四边形,
OA=OC,
.AEA.BD,CF1BD,
\1AEO?CFO907,
\-ZAOE=ZCOF,
\V>AEO@r>CFO(AAS),
:.AE=CF.
【点睛】本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练
掌握相关的知识点.
22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究
函数性质的过程.以下是我们研究函数丫=其7性质及其应用的部分过程,请按要求完成
X-+1
下列各小题.
(1)请把下表部车完整,并在图中孙全该函数图象;
X-5-4-3-2-1012345
6x_L5_24_12122415
y~x2+l-303
~~n~~5TT713
(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在相应的括号内打
7”,错误的在相应的括号内打“X”;
①该函数图象是轴对称图形,它的对称轴为y轴;()
②该函数在自变量的取值范围内,有最大值和最小值,当x=l时,函数取得最大值3;当
%=-1时,函数取得最小值一3;()
③当》<一1或X>1时,y随x的增大而减小;当一1cx<1时,y随x的增大而增大;()
(3)已知函数y=2x-1的图象如图所示,结合你所画的函数图象,直接写出不等式
言>21的解集(保留1位小数,误差不超过。.2).
oQ
【答案】(1)-1,—;(2)①x②4③4;(3)x<—I或—0.3<xV1.8.
【解析】
【分析】G)代入x=3和x=-3即可求出对应的y值,再补全函数图象即可;
(2)结合函数图象可从增减性及对称性进行判断;
(3)根据图象求解即可.
_ig9
【详解】解:(1)当x=-3时,
X2+19+15
,.6x189
当x=3时,y=f~—
x+19+15
函数图象如下:
(2)①由函数图象可得它是中心对称图形,不是轴对称图形;
故答案为:x,
②结合函数图象可得:该函数在自变量的取值范围内,有最大值和最小值,当X=1时,函
数取得最大值3;当%=-1时,函数取得最小值一3;
故答案为:4>
③观察函数图象可得:当尤<—1或x>l时,y随x的增大而减小;当-1<X<1时,y随x
的增大而增大;
故答案为:4.
(3)x<-l,-<).28<x<1.78(-0.28±0.2<x<1.78±0.2)
6x
4r时,(x+DRd—3x-1)=0
得%=-1,%三普。1.8,七=上普….3,
故该不等式的解集为:x<-l或-0.3VXV1.8.
【点睛】本题主要考查一次函数的图象和性质,一次函数与一元一次不等式,会用描点法画
出函数图象,利用数形结合的思想得到函数的性质是解题的关键.
23.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,
现在我们利用整数的除法运算来研究一种数——“差一数
定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差
一数”.
例如:14+5=2……4,14+3=4……2,所以14是“差一数”;
19+5=3……4,但19+3=6……1,所以19不是“差一数”.
(I)判断49和74是否为“差一数”?请说明理由;
(2)求大于300且小于400的所有“差一数”.
【答案】⑴49不是“差一数”,74是“差一数”,理由见解析;(2)314、329、344、359、
374、389
【解析】
【分析】(1)直接根据“差一数”的定义计算判断即可;
(2)解法一:根据“差一数”的定义可知被5除余4的数个位数字为4或9,被3除余2
的数各位数字之和被3除余2,由此可依次求得大于300且小于400的所有“差一数”;解
法二:根据题意可得:所求数加1能被15整除,据此可先求出大于300且小于400的能被
15整除的数,进一步即得结果.
【详解】解:(1)V49-5-5=9...4;49-5-3=16...1,
,49不是“差一数”,
•;74+5=14……4;74+3=24……2,
•••74是“差一数”;
(2)解法一::“差一数”这个数除以5余数为4,
“差一数”这个数的个位数字为4或9,
大于300且小于400的符合要求的数为304、309、314、319、324、329、334、339、344、
349、354、359、364、369、374、379、384、389、394、399,
,,差一数”这个数除以3余数为2,
“差一数”这个数的各位数字之和被3除余2,
,大于300且小于400的所有“差一数”为314、329、344、359、374、389.
解法二:•.•“差一数”这个数除以5余数为4,且除以3余数为2,
•••这个数加1能被15整除,
,大于300且小于400
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度环保设备安装调试合同
- 2024年度别墅区清洁服务合同
- 2024年度数据中心服务合同(云计算服务商)
- 2024版石材供应与施工服务合作协议
- 2024年吸音海绵项目申请报告范文
- 2024年度体育场馆经营权转让合同
- 创业空间的品牌建设与形象塑造考核试卷
- 日用化学产品的品牌形象与消费者认知考核试卷
- 广告行业管理与营销考核试卷
- 化学纤维制造企业的工艺技术创新考核试卷
- 2024-2030年中国房车行业竞争战略发展趋势预测报告
- 2023年8月26日事业单位联考C类《职业能力倾向测验》试题
- 2023年天津公务员已出天津公务员考试真题
- 施工现场临水施工方案
- 2022年公务员多省联考《申论》真题(四川县乡卷)及答案解析
- 艾滋病职业防护培训
- 全科医生转岗培训结业考核模拟考试试题
- 2025年高考数学专项题型点拨训练之初等数论
- 上海市浦东新区2024-2025学年六年级上学期11月期中数学试题(无答案)
- 吃动平衡健康体重 课件 2024-2025学年人教版(2024)初中体育与健康七年级全一册
- 通信技术工程师招聘笔试题与参考答案(某世界500强集团)2024年
评论
0/150
提交评论