版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省武汉市江夏一中2025届数学高一上期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则()A.{-1} B.{0,1}C.{-1,2,3} D.{-1,0,1,3}2.的值为()A. B.C. D.3.若直线经过两点,且倾斜角为45°,则m的值为A. B.1C.2 D.4.一个扇形的弧长为6,面积为6,则这个扇形的圆心角是()A.1 B.2C.3 D.45.设向量,,,则A. B.C. D.6.定义在上的连续函数有下列的对应值表:01234560-1.2-0.22.1-23.22.4则下列说法正确是A.函数在上有4个零点 B.函数在上只有3个零点C.函数在上最多有4个零点 D.函数在上至少有4个零点7.采用系统抽样方法,从个体数为1001的总体中抽取一个容量为40的样本,则在抽取过程中,被剔除的个体数与抽样间隔分别为()A.1,25 B.1,20C.3,20 D.3,258.集合,则A∩B=()A.[0,2] B.(1,2]C.[1,2] D.(1,+∞)9.已知函数,,则的零点所在的区间是A. B.C. D.10.计算sin(-1380°)的值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.幂函数的图像经过点,则_______12.若点在过两点的直线上,则实数的值是________.13.已知,,则_________.14.要制作一个容器为4,高为无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元)15.如图,扇形的周长是6,该扇形的圆心角是1弧度,则该扇形的面积为______.16.当时,使成立的x的取值范围为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.△ABC中,A(3,-1),AB边上的中线CM所在直线方程为:6x+10y-59=0,∠B的平分线方程BT为:x-4y+10=0,求直线BC的方程.18.已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当直线l的倾斜角为45º时,求弦AB的长.19.观察下列各等式:,,.(1)请选择其中的一个式子,求出a的值;(2)分析上述各式的特点,写出能反映一般规律的等式,并进行证明.20.已知函数(1)求函数导数;(2)求函数的单调区间和极值点.21.一家货物公司计划在距离车站不超过8千米的范围内征地建造仓库,经过市场调查了解到下列信息:征地费用(单位:万元)与仓库到车站的距离(单位:千米)的关系为.为了交通方便,仓库与车站之间还要修一条道路,修路费用(单位:万元)与仓库到车站的距离(单位:千米)成正比.若仓库到车站的距离为3千米时,修路费用为18万元.设为征地与修路两项费用之和.(1)求的解析式;(2)仓库应建在离车站多远处,可使总费用最小,并求最小值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由交集与补集的定义即可求解.【详解】解:因为集合A={0,1,2},B={-1,0,1},所以,又全集U={-1,0,1,2,3},所以,故选:C.2、B【解析】由诱导公式可得,故选B.3、A【解析】由两点坐标求出直线的斜率,再由斜率等于倾斜角的正切值列出方程求得的值.【详解】因为经过两点,的直线的倾斜角为45°,∴,解得,故选A【点睛】本题主要考查了直线的斜率与倾斜角的关系,属于基础题.4、C【解析】根据扇形的弧长公式和扇形的面积公式,列出方程组,即可求解,得到答案.【详解】设扇形所在圆的半径为,由扇形的弧长为6,面积为6,可得,解得,即扇形的圆心角为.故选C.【点睛】本题主要考查了扇形的弧长公式,以及扇形的面积公式的应用,其中解答中熟练应用扇形的弧长公式和扇形的面积公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.5、A【解析】,由此可推出【详解】解:∵,,,∴,,,,故选:A【点睛】本题主要考查平面向量垂直的坐标表示,考查平面向量的模,属于基础题6、D【解析】由表格数据可知,连续函数满足,根据零点存在定理可得,在区间上,至少各有一个零点,所以函数在上至少有个零点,故选D.7、A【解析】根据系统抽样的间隔相等,利用求出抽取过程中被剔除的个体数和抽样间隔【详解】解:因为余1,所以在抽取过程中被剔除的个体数是1;抽样间隔是25故选:A8、B【解析】先求出集合A,B,再求两集合的交集即可【详解】解:由,得,所以,由于,所以,所以,所以,故选:B9、C【解析】由题意结合零点存在定理确定的零点所在的区间即可.【详解】由题意可知函数在上单调递减,且函数为连续函数,注意到,,,,结合函数零点存在定理可得的零点所在的区间是.本题选择C选项.【点睛】应用函数零点存在定理需要注意:一是严格把握零点存在性定理的条件;二是连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分条件,而不是必要条件;三是函数f(x)在(a,b)上单调且f(a)f(b)<0,则f(x)在(a,b)上只有一个零点.10、D【解析】根据诱导公式以及特殊角三角函数值求结果.【详解】sin(-1380°)=sin(-1380°+1440°)=sin(60°)=故选:D【点睛】本题考查诱导公式以及特殊角三角函数值,考查基本求解能力,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】本题首先可以根据函数是幂函数设函数解析式为,然后带入点即可求出的值,最后得出结果。【详解】因为函数是幂函数,所以可设幂函数,带入点可得,解得,故幂函数,即,答案为。【点睛】本题考查函数解析式的求法,考查对幂函数的性质的理解,可设幂函数解析式为,考查计算能力,是简单题。12、【解析】先由直线过两点,求出直线方程,再利用点在直线上,求出的值.【详解】由直线过两点,得,则直线方程为:,得,即,又点在直线上,得,得.故答案为:【点睛】本题考查了已知两点求直线的方程,直线方程的应用,属于容易题.13、【解析】利用两角差的正切公式可计算出的值.【详解】由两角差的正切公式得.故答案为:.【点睛】本题考查利用两角差的正切公式求值,解题的关键就是弄清角与角之间的关系,考查计算能力,属于基础题.14、160【解析】设底面长方形的长宽分别为和,先求侧面积,进一步求出总的造价,利用基本不等式求出最小值.【详解】设底面长方形的长宽分别为和,则,所以总造价当且仅当的时区到最小值则该容器的最低总造价是160.故答案为:160.15、2【解析】由扇形周长求得半径同,弧长,再由面积公式得结论【详解】设半径为,则,,所以弧长为,面积为故答案为:216、【解析】根据正切函数的图象,进行求解即可【详解】由正切函数的图象知,当时,若,则,即实数x的取值范围是,故答案为【点睛】本题主要考查正切函数的应用,利用正切函数的性质结合函数的单调性是解决本题的关键三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、.【解析】设则的中点在直线上和点在直线上,得,求得,再根据到角公式,求得,进而求得直线的方程试题解析:设则的中点在直线上,则,即…①,又点在直线上,则…②联立①②得,,有直线平分,则由到角公式得,得的直线方程为:.18、(1)2x-y-2=0;(2)【解析】(1)由圆的方程可求出圆心,再根据直线过点P、C,由斜率公式求出直线的斜率,由点斜式即可写出直线l的方程;(2)根据点斜式写出直线l的方程,再根据弦长公式即可求出【详解】(1)已知圆C:的圆心为C(1,0),因直线过点P、C,所以直线l的斜率为,直线l的方程为y=2(x-1),即2x-y-2=0(2)当直线l的倾斜角为45º时,斜率为1,直线l的方程为y-2=x-2,即x-y=0.所以圆心C到直线l的距离为因为圆的半径为3,所以,弦AB的长【点睛】本题主要考查直线方程的求法以及圆的弦长公式的应用,意在考查学生的数学运算能力,属于基础题19、(1)(2)证明见详解【解析】(1)利用第三个式子,结合特殊角的三角函数值代入计算即可;(2)用两角和正弦公式展开,代入化简,结合,即得解【小问1详解】由题意,【小问2详解】根据题干中各个式子的特点,猜想等式:证明:左边即得证20、(1);(2)函数的单调递增区间为和,单调递减区间为.函数的极大值点为,极小值点为.【解析】(1)直接利用导数求导得解;(2)令,求出方程的根,再列表得解.【小问1详解】解:由题得.【小问2详解】解:,令或.当变化时,的变化情况如下表,正0负0正单调递增极大值点单调递减极小值点单调递增所以函数的单调递增区间为和,单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 计算机软硬件购销合同
- 详解投标人须知的招标文件核心内容
- 语文大专阅读理解卷
- 财务顾问合同服务亮点
- 货物采购招标文件模板要点
- 质量技能担保
- 购物卡采购合同版
- 购销合同延期的影响
- 购销合同门禁系统的技术实践经验
- 走读生自觉培养自我保护能力保证书
- 学用电风扇(课件)人教版劳动六年级上册
- 纪念与象征-空间中的实体艺术
- 高三地理后期复习:学生盲区分析及应对策略
- 《思想道德与法制》课件+绪论
- 住院医师规培入科教育(妇产科)
- 催化剂初始装填量及补充量的计算方法
- 论企业营销战略与企业经营战略的关系
- 招聘智力测试题
- 2022氯化企业安全风险隐患排查指南
- GRR表格MSA第四版(手册例)
- 工程部管理办法(实施细则)
评论
0/150
提交评论