版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南通市海安县2025届数学高一上期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的最小正周期为A. B.C.2 D.42.设函数若关于的方程有四个不同的解且则的取值范围是A. B.C. D.3.已知定义在R上的函数是奇函数且满足,,数列满足,且,(其中为的前n项和).则A.3 B.C. D.24.设点分别是空间四边形的边的中点,且,,,则异面直线与所成角的正弦值是()A. B.C. D.5.表示不超过x的最大整数,例如,.若是函数的零点,则()A.1 B.2C.3 D.46.容量为100的样本数据,按从小到大的顺序分为8组,如下表:组号12345678频数1013141513129第3组的频数和频率分别是()A.和14 B.14和C.和24 D.24和7.设,则A. B.C. D.8.函数,则函数的零点个数为()A.2个 B.3个C.4个 D.5个9.比较,,的大小()A. B.C. D.10.甲乙两名同学6次考试的成绩统计如右图,甲乙两组数据的平均数分别为,标准差分别为则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在上,满足的取值范围是______.12.奇函数f(x)是定义在[-2,2]上的减函数,若f(2a+1)+f(4a-3)>0,则实数a的取值范围是_______13.大西洋鲑鱼每年都要逆流而上游回产地产卵,研究鱼的科学家发现大西洋鲑鱼的游速(单位:)可以表示为,其中表示鱼的耗氧量的单位数.当一条大西洋鲑鱼的耗氧量的单位数是其静止时耗氧量的单位数的倍时,它的游速是________14.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某三棱锥的三视图,则该三棱锥的体积为__________15.在平面直角坐标系中,已知为坐标原点,,,,若动点,则的最大值为______.16.已知函数,则函数零点的个数为_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面四边形ABCD中,AB=2,CD=23,∠DAB=∠CDB=θ,0<θ<π2,∠ADB=π(1)求四边形ABCD面积的最大值;(2)求DA+DB+DE的取值范围18.已知,,,请在①②,③中任选一个条件,补充在横线上(1)求的值;(2)求的值19.已知直线和点,设过点且与平行的直线为.(1)求直线的方程;(2)求点关于直线的对称点20.已知函数的部分图像如图所示(1)求函数f(x)的解析式,并写出其单调递增区间;(2)在△ABC中,内角A、B、C的对边分别为a、b、c,若,且a、b是方程的两个实数根,试求△ABC的周长及其外接圆的面积21.在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点,(Ⅰ)求证:A1C1⊥BC1;(Ⅱ)求证:AC1∥平面CDB1
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】分析:根据正切函数的周期求解即可详解:由题意得函数的最小正周期为故选C点睛:本题考查函数的最小正周期,解答此类问题时根据公式求解即可2、A【解析】画出函数的图像,通过观察的图像与的交点,利用对称性求得与的关系,根据对数函数的性质得到与的关系.再利用函数的单调性求得题目所求式子的取值范围.【详解】画出函数的图像如下图所示,根据对称性可知,和关于对称,故.由于,故.令,解得,所以.,由于函数在区间为减函数,故,故选A.【点睛】本小题主要考查函数的对称性,考查对数函数的性质,以及函数图像的交点问题,还考查了利用函数的单调性求函数的值域的方法,属于中档题.3、A【解析】由奇函数满足可知该函数是周期为的奇函数,由递推关系可得:,两式做差有:,即,即数列构成首项为,公比为的等比数列,故:,综上有:,,则:.本题选择A选项.4、C【解析】取BD中点G,连结EG、FG∵△ABD中,E、G分别为AB、BD的中点∴EG∥AD且EG=AD=4,同理可得:FG∥BC且FG=BC=3,∴∠FEG(或其补角)就是异面直线AD与EF所成的角∵△FGE中,EF=5,EG=4,FG=3,∴EF2=25=EG2+FG2,得故答案为C.5、B【解析】利用零点存在定理得到零点所在区间求解.【详解】因为函数在定义域上连续的增函数,且,又∵是函数的零点,∴,所以,故选:B.6、B【解析】根据样本容量和其它各组的频数,即可求得答案.【详解】由题意可得:第3组频数为,故第3组的频率为,故选:B7、B【解析】因为,所以.选B8、D【解析】函数h(x)=f(x)﹣log4x的零点个数⇔函数f(x)与函数y=log4x的图象交点个数.画出函数f(x)与函数y=log4x的图象(如上图),其中=的图像可以看出来,当x增加个单位,函数值变为原来的一半,即往右移个单位,函数值变为原来的一半;依次类推;根据图象可得函数f(x)与函数y=log4x的图象交点为5个∴函数h(x)=f(x)﹣log4x的零点个数为5个.故选D9、D【解析】由对数函数的单调性判断出,再根据幂函数在上单调递减判断出,即可确定大小关系.【详解】因为,,所以故选:D【点睛】本题考查利用对数函数及幂函数的单调性比较数的大小,属于基础题.10、C【解析】利用甲、乙两名同学6次考试的成绩统计直接求解【详解】由甲乙两名同学6次考试的成绩统计图知:甲组数据靠上,乙组数据靠下,甲组数据相对集中,乙组数据相对分散分散布,由甲乙两组数据的平均数分别为,标准差分别为得,故选【点睛】本题考查命题真假的判断,考查平均数、的定义和性质等基础知识,考查运算求解能力,是基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】结合正弦函数图象可知时,结合的范围可得到结果.【详解】本题正确结果:【点睛】本题考查根据三角函数值的范围求解角所处的范围,关键是能够熟练应用正弦函数图象得到对应的自变量的取值集合.12、[【解析】利用函数的奇偶性、单调性去掉不等式中的符号“f”,可转化为具体不等式,注意函数定义域【详解】解:由f(2a+1)+f(4a-3)>0得f(2a+1)>-f(4a-3),又f(x)为奇函数,得-f(4a-3)=f(3-4a),∴f(2a+1)>f(3-4a),又f(x)是定义在[-2,2]上的减函数,∴解得:1即a∈故答案为:1【点睛】本题考查函数的奇偶性、单调性的综合应用,考查转化思想,解决本题的关键是利用性质去掉符号“f”13、【解析】设大西洋鲑鱼静止时的耗氧量为,计算出的值,再将代入,即可得解.【详解】设大西洋鲑鱼静止时的耗氧量为,则,可得,将代入可得.故答案为:.14、1【解析】由图可知,该三棱锥的体积为V=15、【解析】设动点,由题意得动点轨迹方程为则由其几何意义得表示圆上的点到的距离,故点睛:本题主要考查了平面向量的线性运算及其运用,综合了圆上点与定点之间的距离最大值,先给出动点的轨迹方程,再表示出向量的坐标结果,依据其几何意义计算求得结果,本题方法不唯一,还可以直接计算含有三角函数的最值16、【解析】解方程,即可得解.【详解】当时,由,可得(舍)或;当时,由,可得.综上所述,函数零点的个数为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2+(2)2,1+2【解析】(1)依题意可得DA=2cosθ,DB=2sinθ,再由∠CDB=θ,得到BE=2sin2θ(2)依题意可得DA+DB+DE=2cosθ+2sinθ+2sin【小问1详解】解:因为∠ADB=90°,AB=2,∠DAB=θ,所以DA=2cosθ,又因为∠CDB=θ,所以BE=BDsinθ=2则S==2==2因为0<θ<π2,-π当2θ-π3=π2时,即θ=5π【小问2详解】解:DA+DB+DE=2设t=cosθ+sin所以2cosθsin因为t=2sinθ+π而DA+DB+DE=(t+1)2-2可得DA+DB+DE的取值范围2,1+218、(1);(2).【解析】(1)根据所选的条件求得,,再由差角正弦公式求的值;(2)由题设可得,进而可得,结合及差角余弦公式,即可求值.【小问1详解】由,则:若选①,由,,得,,若选②,由得:,所以,若选③,由得,,,,所以.【小问2详解】∵,∴,又,∴∴.19、(1)x+2y-3=0(2)B(2,-2)【解析】(1)根据两直线平行则斜率相同,再将点代入即可求出直线的方程;(2)设出所求点的坐标,可表示出中点的坐标,再根据点关于直线的对称性质可得方程组,即可求出对称点的坐标.试题解析:(1)设,点代入∴:(2)设,则,的中点∴∴∴20、(1),(2),【解析】(1)根据图像可得及函数的周期,从而求得,然后利用待定系数法即可求得,再根据正弦函数的单调性结合整体思想即可求出函数的增区间;(2)根据可求得角,利用韦达定理可得,再利用余弦定理可求得边,再利用正弦定理可得外接圆的半径,即可得出答案.【小问1详解】解:由函数图象知,又由函数图象知,所以,得,∴,因为图象过点(0,1),所以,所以,又因为,所以,所以函数f(x)的解析式为,令,则,所以单调递增区间为:;【小问2详解】,结合,则,所以,又由题设,得,所以,所以,∴三角形ABC的周长,∵外接圆的直径,∴,∴外接圆的面积.21、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国花生加工机械数据监测研究报告
- 2025至2030年中国瞻仰台数据监测研究报告
- 2025至2030年中国尼龙缝线数据监测研究报告
- 2025至2030年中国固定式螺旋板换热器数据监测研究报告
- 2025至2030年中国侧式全自动捆扎机数据监测研究报告
- 2025至2030年中国2,3-二羟基苯甲酸数据监测研究报告
- 2025年中国物料箱市场调查研究报告
- 2025至2031年中国税用扫描仪行业投资前景及策略咨询研究报告
- 2025至2031年中国尖头扁什锦锉行业投资前景及策略咨询研究报告
- 豪华别墅交易居间服务合同
- 平面向量及其应用试题及答案
- 2024高考复习必背英语词汇3500单词
- 消防控制室值班服务人员培训方案
- 《贵州旅游介绍》课件2
- 2024年中职单招(护理)专业综合知识考试题库(含答案)
- 无人机应用平台实施方案
- 挪用公款还款协议书范本
- 事业单位工作人员年度考核登记表(医生个人总结)
- 盾构隧道施工数字化与智能化系统集成
- 【企业盈利能力探析文献综述2400字】
- 2019年医养结合项目商业计划书
评论
0/150
提交评论