版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省常德市武陵区第一中学高一数学第一学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.角的终边落在()A.第一象限 B.第二象限C.第三象限 D.第四象限2.若一束光线从点射入,经直线反射到直线上的点,再经直线反射后经过点,则点的坐标为()A. B.C. D.3.已知正实数满足,则的最小值是()A B.C. D.4.集合{|是小于4的正整数},,则如图阴影部分表示的集合为()A. B.C. D.5.设全集,集合,,则=()A. B.C. D.6.下图是一几何体的平面展开图,其中四边形为正方形,,,,为全等的等边三角形,分别为的中点.在此几何体中,下列结论中错误的为A.直线与直线共面 B.直线与直线是异面直线C.平面平面 D.面与面的交线与平行7.若直线与圆的两个交点关于直线对称,则,的直线分别为()A., B.,C., D.,8.已知函数,则下列是函数图象的对称中心的坐标的是()A. B.C. D.9.过点且平行于直线的直线方程为()A. B.C. D.10.是边AB上的中点,记,,则向量A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.定义A-B={x|x∈A且xB},已知A={2,3},B={1,3,4},则A-B=______12.如图,已知矩形ABCD,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一个点Q满足PQ⊥QD,则a的值等于________13.已知集合,.若,则___________.14.已知向量,,,,则与夹角的余弦值为______15.已知函数,则无论取何值,图象恒过的定点坐标______;若在上单调递减,则实数的取值范围是______16.函数(其中,,)的图象如图所示,则函数的解析式为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,其中(1)若是的充分条件,求实数的取值范围;(2)是否存在,使得是的必要条件?若存在,求出的值;若不存在,请说明理由18.目前,"新冠肺炎"在我国得到了很好的遏制,但在世界其他一些国家还大肆流行.因防疫需要,某学校决定对教室采用药熏消毒法进行消毒,药熏开始前要求学生全部离开教室.已知在药熏过程中,教室内每立方米空气中的药物含量(毫克)与药熏时间(小时)成正比;当药熏过程结束,药物即释放完毕,教室内每立方米空气中的药物含量(毫克)达到最大值.此后,教室内每立方米空气中的药物含量(毫克)与时间(小时)的函数关系式为(为常数).已知从药熏开始,教室内每立方米空气中的药物含量(毫克)关于时间(小时)的变化曲线如图所示.(1)从药熏开始,求每立方米空气中的药物含量(毫克)与时间(小时)之间的函数关系式;(2)据测定,当空气中每立方米的药物含量不高于0.125毫克时,学生方可进入教室,那么从药熏开始,至少需要经过多少小时后,学生才能回到教室?19.已知函数其中,求:函数的最小正周期和单调递减区间;函数图象的对称轴20.已知函数(,且)是指数函数.(1)求k,b的值;(2)求解不等式.21.已知的内角所对的边分别为,(1)求的值;(2)若,求面积
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由于,所以由终边相同的定义可得结论【详解】因为,所以角的终边与角的终边相同,所以角的终边落在第一象限角故选:A2、C【解析】由题可求A关于直线的对称点为及关于直线的对称点为,可得直线的方程,联立直线,即得.【详解】设A关于直线的对称点为,则,解得,即,设关于直线的对称点为,则,解得,即,∴直线的方程为:代入,可得,故.故选:C.3、B【解析】根据题中条件,得到,展开后根据基本不等式,即可得出结果.【详解】因为正实数满足,所以,当且仅当,即时,等号成立.故选:B.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4、B【解析】先化简集合A,再判断阴影部分表示的集合为,求交集即得结果.【详解】依题意,,阴影部分表示的集合为.故选:B.5、B【解析】根据题意和补集的运算可得,利用交集的概念和运算即可得出结果.【详解】由题意知,所以.故选:B6、C【解析】画出几何体的图形,如图,由题意可知,A,直线BE与直线CF共面,正确,因为E,F是PA与PD的中点,可知EF∥AD,所以EF∥BC,直线BE与直线CF是共面直线;B,直线BE与直线AF异面;满足异面直线的定义,正确C,因为△PAB是等腰三角形,BE与PA的关系不能确定,所以平面BCE⊥平面PAD,不正确D,∵AD∥BC,∴AD∥平面PBC,∴面PAD与面PBC的交线与BC平行,正确故答案选C7、A【解析】由圆的对称性可得过圆的圆心且直线与直线垂直,从而可求出.【详解】因为直线与圆的两个交点关于直线对称,故直线与直线垂直,且直线过圆心,所以,,所以,.故选:A【点睛】本题考查直线方程的求法,注意根据圆的对称性来探求两条直线的位置关系以及它们满足的某些性质,本题属于基础题.8、A【解析】根据三角函数性质计算对称中心【详解】令,则,故图象的对称中心为故选:A9、A【解析】设直线的方程为,代入点的坐标即得解.【详解】解:设直线的方程为,把点坐标代入直线方程得.所以所求的直线方程为.故选:A10、C【解析】由题意得,∴.选C二、填空题:本大题共6小题,每小题5分,共30分。11、{2}【解析】∵A={2,3},B={1,3,4},又∵A-B={x|x∈A且xB},∴A-B={2}故答案为{2}.12、2【解析】证明平面得到,故与以为直径的圆相切,计算半径得到答案.详解】PA⊥平面ABCD,平面ABCD,故,PQ⊥QD,,故平面,平面,故,在BC上只有一个点Q满足PQ⊥QD,即与以为直径的圆相切,,故间的距离为半径,即为1,故.故答案为:213、【解析】根据给定条件可得,由此列式计算作答.【详解】因集合,,且,于是得,即,解得,所以.故答案为:14、【解析】运用平面向量的夹角公式可解决此问题.【详解】根据题意得,,,,故答案为.【点睛】本题考查平面向量夹角公式的简单应用.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).15、①.②.【解析】计算的值,可得出定点坐标;分析可知,对任意的,,利用参变量分离法可求得,分、、三种情况讨论,分析函数在上的单调性,由此可得出实数的取值范围.【详解】因为,故函数图象恒过的定点坐标为;由题意可知,对任意的,,则,因为函数在上单调递增,且当时,,所以,.当时,在上为减函数,函数为增函数,所以,函数、在上均为减函数,此时,函数在上为减函数,合乎题意;当且时,,不合乎题意;当时,在上为增函数,函数为增函数,函数、在上均为增函数,此时,函数在上为增函数,不合乎题意.综上所述,若在上单调递减,.故答案为:;.16、【解析】如图可知函数的最大值,当时,代入,,当时,代入,,解得则函数的解析式为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)不存在,理由见解析【解析】(1)解不等式,由充分条件定义得出实数的取值范围;(2)由是的必要条件得出不等关系,结合作出判断.【小问1详解】由得,故有由得,即若p是q的充分条件,则成立,即得.【小问2详解】因为,所以或若是q的必要条件,则成立,则或,显然这两个不等式均与矛盾,故不存在满足条件的m18、(1);(2)0.8小时.【解析】(1)时,设,由最高点求出,再依据最高点求出参数,从而得函数解析式;(2)解不等式可得结论【详解】解:(1)依题意,当时,可设,且,解得又由,解得,所以(2)令,即,得,解得,即至少需要经过后,学生才能回到教室.19、(1)最小正周期为,;(2),.【解析】利用正余弦的二倍角公式和辅助角公式将函数解析式化简,再利用正弦函数的周期性、单调性,即可得出结论.利用正弦函数图象的对称性,即可得图象的对称轴【详解】函数,故函数的最小正周期为,令,求得,故函数的减区间为,令,求得,,故函数的图象的对称轴为,【点睛】本题主要考查三角恒等变换,正弦函数的周期性、单调性,以及图象的对称性,属于中档题20、(1),(2)答案见解析【解析】(1)根据指数函数的定义列出方程,即可得解;(2)分和两种情况讨论,结合指数函数的单调性即可得解.【小问1详解】解:因为(,且)是指数函数,所以,,所以,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 在乡村实习证明模板(6篇)
- 公司法务基础知识题库单选题100道及答案解析
- 语文统编版(2024)一年级上册识字4.日月山川 教案
- 《学前儿童卫生保健》 教案 12 项目二:学前儿童意外事故的急救1
- 第2章 第5节 营养学基础课件
- 学校传染病控制课件
- 2024-2025学年专题10.3 物体的浮沉条件及应用-八年级物理人教版(下册)含答案
- 2024届山西省太原市第四十八中学高三下学期3月线上教学数学试题检测试题卷二
- 第3章 圆的基本性质 浙教版数学九年级上册章末训练题(含答案)
- 招考《弯道跑》说课稿
- 浙江省9+1高中联盟2022-2023学年高一上学期11月期中化学试题 含解析
- 人教版七年级数学上学期《1.4-有理数的乘除法》同步练习卷
- 《中医基础理论》课程教案
- 北师大版生物八年级上册 第20章 第1节 遗传和变异现象(1)(教案)
- 2024年移动网格长认证考试题库大全及答案
- 2024-2030年中国机械计数器行业应用动态与发展前景预测报告
- 湖南省湘楚名校联考2024-2025学年高三上学期8月月考英语试题
- 2024年交通运输行政执法资格考试试题
- 承包蟹塘合同
- 小学思政课《爱国主义教育》
- 服务器设备到货验收
评论
0/150
提交评论