2025届北京市海淀区高一数学第一学期期末考试模拟试题含解析_第1页
2025届北京市海淀区高一数学第一学期期末考试模拟试题含解析_第2页
2025届北京市海淀区高一数学第一学期期末考试模拟试题含解析_第3页
2025届北京市海淀区高一数学第一学期期末考试模拟试题含解析_第4页
2025届北京市海淀区高一数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届北京市海淀区高一数学第一学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.把表示成,的形式,则的值可以是()A. B.C. D.2.半径为,圆心角为弧度的扇形的面积为()A. B.C. D.3.已知,,则下列不等式正确的是()A. B.C. D.4.已知函数,将图象向右平移个单位长度得到函数的图象,若对任意,都有成立,则的值为A. B.1C. D.25.如图,正方形中,为的中点,若,则的值为()A. B.C. D.6.已知函数,则()A.﹣1 B.C. D.37.零点所在的区间是()A. B.C. D.8.将函数的图像向左、向下各平移1个单位长度,得到的函数图像,则()A. B.C. D.9.已知,求的值()A. B.C. D.10.若“”是假命题,则实数m的最小值为()A.1 B.-C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形的圆心角为,其弧长是其半径的2倍,则__________12.定义域为的奇函数,当时,,则关于的方程所有根之和为,则实数的值为________13.若不等式的解集为,则不等式的解集为______.14.已知函数f(x)=cos(ωx+φ)(ω>0,|φ|≤),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为______15.有下列四个说法:①已知向量,,若与的夹角为钝角,则;②若函数的图象关于直线对称,则;③函数在上单调递减,在上单调递增;④当时,函数有四个零点其中正确的是___________(填上所有正确说法的序号)16.函数为奇函数,且对任意互不相等的,,都有成立,且,则的解集为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,边长为的正方形所在平面与正三角形所在平面互相垂直,分别为的中点.(1)求四棱锥的体积;(2)求证:平面;(3)试问:在线段上是否存在一点,使得平面平面?若存在,试指出点的位置,并证明你的结论;若不存在,请说明理由.18.已知非空集合,(1)当时,求;(2)若,求实数的取值范围19.已知函数(1)若,求实数a值;(2)若函数f(x)有两个零点,求实数a的取值范围20.近年来,随着我市经济的快速发展,政府对民生越来越关注市区现有一块近似正三角形的土地(如图所示),其边长为2百米,为了满足市民的休闲需求,市政府拟在三个顶点处分别修建扇形广场,即扇形和,其中与、分别相切于点,且与无重叠,剩余部分(阴影部分)种植草坪.设长为(单位:百米),草坪面积为(单位:万平方米).(1)试用分别表示扇形和的面积,并写出的取值范围;(2)当为何值时,草坪面积最大?并求出最大面积.21.已知函数.(1)求的值;你能发现与有什么关系?写出你的发现并加以证明:(2)试判断在区间上的单调性,并用单调性的定义证明.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由结合弧度制求解即可.【详解】∵,∴故选:B2、A【解析】由扇形面积公式计算【详解】由题意,故选:A3、C【解析】利用指数函数、对数函数的单调性即可求解.【详解】由为单调递减函数,则,为单调递减函数,则,为单调递增函数,则故.故选:C【点睛】本题考查了指数函数、对数函数的单调性比较指数式、对数式的大小,属于基础题.4、D【解析】利用辅助角公式化简的解析式,再利用正弦型函数的图象变换规律,正弦函数的图象的对称性,求得的值【详解】,(其中,),将图象向右平移个单位长度得到函数的图象,得到,∴,,解得,故选D.5、D【解析】因为E是DC的中点,所以,∴,∴,考点:平面向量的几何运算6、C【解析】先计算,再代入计算得到答案.【详解】,则故选:【点睛】本题考查了分段函数的计算,意在考查学生的计算能力.7、C【解析】利用零点存在定理依次判断各个选项即可.【详解】由题意知:在上连续且单调递增;对于A,,,内不存在零点,A错误;对于B,,,内不存在零点,B错误;对于C,,,则,内存在零点,C正确;对于D,,,内不存在零点,D错误.故选:C.8、B【解析】根据函数的图象变换的原则,结合对数的运算性质,准确运算,即可求解.【详解】由题意,将函数的图像向左、向下各平移1个单位长度,可得.故选:B.9、A【解析】利用同角三角函数的基本关系,即可得到答案;【详解】,故选:A10、C【解析】根据题意可得“”是真命题,故只要即可,求出的最大值,即可求出的范围,从而可得出答案.【详解】解:因为“”是假命题,所以其否定“”是真命题,故只要即可,因为的最大值为,所以,解得,所以实数m的最小值为.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、-1【解析】由已知得,所以则,故答案.12、【解析】由题意,作函数y=f(x)与y=a的图象如下,结合图象,设函数F(x)=f(x)﹣a(0<a<1)的零点分别为x1,x2,x3,x4,x5,则x1+x2=﹣6,x4+x5=6,﹣log0.5(﹣x3+1)=a,x3=1﹣2a,故x1+x2+x3+x4+x5=﹣6+6+1﹣2a=1﹣2a,∵关于x的方程f(x)﹣a=0(0<a<1)所有根之和为1﹣,∴a=故答案为.点睛:函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题研究方程根的情况,可以通过导数研究函数的单调性、最值、函数的变化趋势等,根据题目要求,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现.同时在解题过程中要注意转化与化归、函数与方程、分类讨论思想的应用13、【解析】由三个二次的关系求,根据分式不等式的解法求不等式的解集.【详解】∵不等式的解集为∴,是方程的两根,∴,∴可化为∴∴不等式的解集为,故答案为:.14、【解析】先根据是的零点,是图像的对称轴可转化为周期的关系,从而求得的取值范围,又根据所求值为最大值,所以从大到小对赋值验证找到适合的最大值即可【详解】由题意可得,即,解得,又因为在上单调,所以,即,因为要求的最大值,令,因为是的对称轴,所以,又,解得,所以此时,在上单调递减,即在上单调递减,在上单调递增,故在不单调,同理,令,,在上单调递减,因为,所以在单调递减,满足题意,所以的最大值为5.【点睛】本题综合考查三角函数图像性质的运用,在这里需注意:两对称轴之间的距离为半个周期;相邻对称轴心之间的距离为半个周期;相邻对称轴和对称中心之间的距离为个周期15、②③【解析】①:根据平面向量夹角的性质进行求解判断;②:利用函数的对称性,结合两角和(差)的正余弦公式进行求解判断即可;③:利用导数的性质、函数的奇偶性进行求解判断即可.④:根据对数函数的性质,结合零点的定义进行求解判断即可【详解】①:因为与的夹角为钝角,所以有且与不能反向共线,因此有,当与反向共线时,,所以有且,因此本说法不正确;②:因为函数的图象关于直线对称,所以有,即,于是有:,化简,得,因为,所以,因此本说法正确;③:因为,所以函数偶函数,,当时,单调递增,即在上单调递增,又因为该函数是偶函数,所以该在上单调递减,因此本说法正确;④:,问题转化为函数与函数的交点个数问题,如图所示:当时,,此时有四个交点,当时,,所以交点的个数不是四个,因此本说法不正确,故答案为:②③16、【解析】由条件可得函数的单调性,结合,分和利用单调性可解.【详解】因为,时,,所以在上单调递减,又因为为奇函数,且,所以在上单调递减,且.当时,不等式,得;当时,不等式,得.综上,不等式的解集为.故答案:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析;(3)存在,为中点,证明见解析.【解析】(1)由等腰三角形三线合一性质和面面垂直性质定理可证得平面,由棱锥体积公式可求得结果;(2)连结交于点,由三角形中位线性质可证得,由线面平行判定定理可得到结论;(3)当为中点时,由正方形的性质、线面垂直的性质,结合线面垂直的判定可证得平面,由面面垂直的判定定理可证得结论.【详解】(1)为中点,为正三角形,.平面平面,平面平面,平面,平面.,,.(2)证明:连结交于点,连结.由四边形为正方形知点为的中点,又为的中点,,平面,平面,平面.(3)存在点,当为中点时,平面平面.证明如下:因为四边形是正方形,为的中点,,由(1)知:平面,平面,,又,平面.平面,平面平面.【点睛】关键点点睛:本题第三问考查了与面面垂直有关的存在性问题的处理,解题关键是能够根据平面确定只要在上,必有,由此只需找到与面中的另一条与相交的直线垂直即可,进而锁定的位置.18、(1);(2).【解析】(1)时,先解一元二次不等式,化简集合A和B,再进行交集运算即可;(2)根据子集关系列不等式,解不等式即得结果.【详解】解:(1)当时,,由,解得,,;(2)由(1)知,,解得,实数的取值范围为.19、(1)(2)【解析】(1)根据即可求出实数a的值;(2)令,根据由求得的值,再根据正弦函数的性质分析的取值情况,结合题意即可得出答案.【小问1详解】解:,∴,∴;【小问2详解】解:令,则,由得,∵在[-,]上是增函数,在[,]上是减函数,且,∴时,x有两个值;或时,x有一个值,其它情况,x值不存在,∴时函数f(x)只有1个零点,时,,要f(x)有2个零点,有,∴时,,要f(x)有2个零点,有,综上,f(x)有两个零点时,a的取值范围是.20、(1),,;(2)时,草坪面积最大,最大面积为万平方米.【解析】(1)因为,所以可得三个扇形的半径,圆心角都为,由扇形的面积公式可得答案;(2)用三角形面积减去三个扇形面积可得草坪面积,再利用二次函数可求出最值.【详解】(1),则,,在扇形中,的长为,所以,同理,.∵与无重叠,∴,即,则.又三个扇形都在三角形内部,则,∴.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论