版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届黑龙江省绥化市绥棱县林业局中学高一数学第一学期期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如果“,”是“”成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.不充分也不必要条件2.若,则等于A. B.C. D.3.已知表示不大于的最大整数,若函数在上仅有一个零点,则实数的取值范围为()A. B.C. D.4.设函数,则下列函数中为奇函数的是()A. B.C. D.5.已知,则()A. B.C. D.的取值范围是6.函数的最小正周期是()A.1 B.2C. D.7.已知是减函数,则a的取值范围是()A. B.C. D.8.使不等式成立的充分不必要条件是()A. B.C. D.9.在中,下列关系恒成立的是A. B.C. D.10.设全集U=1,2,3,4,5,6,7,8,9,集合A=2,4,6,8,那么A.9 B.1,3,5,7,9C.1,3,5 D.2,4,6二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数对于任意,都有成立,则___________12.已知,若,则__________.13.若函数满足,且当时,则______14.已知是定义在上的偶函数,并满足:,当,,则___________.15.设三棱锥的三条侧棱两两垂直,且,则三棱锥的体积是______16.密位广泛用于航海和军事,我国采用“密位制”是6000密位制,即将一个圆圈分成6000等份,每一个等份是一个密位,那么600密位等于___________rad.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.求下列各式的值(1);(2)18.已知函数.(1)判断函数的奇偶性;(2)求证:函数在为单调增函数;(3)求满足的的取值范围.19.已知函数.(1)求的最小正周期和最大值;(2)讨论在上的单调性.20.已知函数(1)求的图象的对称轴的方程;(2)若关于的方程在上有两个不同的实数根,求实数的取值范围21.已知求的值;求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用充分条件和必要条件的定义判断.【详解】当,时,,故充分;当时,,,故不必要,故选:A2、B【解析】,.考点:三角恒等变形、诱导公式、二倍角公式、同角三角函数关系第II卷(非选择题3、C【解析】根据题意写出函数表达式为:,在上仅有一个零点分两种情况,情况一:在第一段上有零点,,此时检验第二段无零点,故满足条件;情况二,第二段有零点,以上两种情况并到一起得到:.故答案为C.点睛:在研究函数零点时,有一种方法是把函数的零点转化为方程的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,这样就可利用导数研究新函数的单调性与极值,从而得出函数的变化趋势,得出结论.4、A【解析】分别求出选项的函数解析式,再利用奇函数的定义即可得选项.【详解】由题意可得,对于A,是奇函数,故A正确;对于B,不是奇函数,故B不正确;对于C,,其定义域不关于原点对称,所以不是奇函数,故C不正确;对于D,,其定义域不关于原点对称,不是奇函数,故D不正确.故选:A.5、B【解析】取判断A;由不等式的性质判断BC;由基本不等式判断D.【详解】当时,不成立,A错误.因为,所以,,B正确,C错误.当,时,,当且仅当时,等号成立,而,D错误故选:B6、A【解析】根据余弦函数的性质计算可得;【详解】因为,所以函数的最小正周期;故选:A7、D【解析】利用分段函数在上单调递减的特征直接列出不等式组求解即得.【详解】因函数是定义在上的减函数,则有,解得,所以的取值范围是.故选:D8、A【解析】解一元二次不等式,再根据充分条件、必要条件的定义结合集合间的关系直接判断作答.【详解】解不等式得:,对于A,因,即是成立的充分不必要条件,A正确;对于B,是成立的充要条件,B不正确;对于C,因,且,则是成立的不充分不必要条件,C不正确;对于D,因,则是成立必要不充分条件,D不正确.故选:A9、D【解析】利用三角函数诱导公式,结合三角形的内角和为,逐个去分析即可选出答案【详解】由题意知,在三角形ABC中,,对A选项,,故A选项错误;对B选项,,故B选项错误;对C选项,,故C选项错误;对D选项,,故D选项正确.故选D.【点睛】本题考查了三角函数诱导公式,属于基础题10、B【解析】由补集的定义分析可得∁U【详解】根据题意,全集U=1,2,3,4,5,6,7,8,9,而A=则∁U故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】由可得时,函数取最小值,由此可求.【详解】,其中,.因为,所以,,解得,,则故答案为:.12、【解析】由已知先求得,再求得,代入可得所需求的函数值.【详解】由已知得,即,所以,而,故答案为.【点睛】本题考查函数求值中的给值求值问题,关键在于由已知的函数值求得其数量关系,代入所需求的函数解析式中,可得其值,属于基础题.13、1009【解析】推导出,当时,从而当时,,,由此能求出的值【详解】∵函数满足,∴,∵当时,∴当时,,,∴故答案为1009【点睛】本题主要考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题14、5【解析】根据可得周期,再结合偶函数,可将中的转化到内,可得的值.【详解】因为,所以,所以,即函数的一个周期为4,所以,又因为是定义在上的偶函数,所以,因当,,所以,所以.故答案为:2.5.15、【解析】根据锥体的体积公式,找到并求出三棱锥的高及底面面积即可求解.【详解】由题意可知该三棱锥为棱长为2的正方体的一个角,如图所示:所以故答案为:【点睛】本题考查锥体体积公式的应用,考查运算求解能力,属于基础题.16、【解析】根据周角为,结合新定义计算即可【详解】解:∵圆周角为,∴1密位,∴600密位,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)首先利用公式降幂,然后将写为将化为即可得解;(2)将记为,记为,再用公式展开,然后化简求值.【详解】(1)原式=(2)原式=故答案为:2;-1【点睛】本题考查三角函数诱导公式,二倍角公式,两角和与差的余弦公式,属于基础题.18、(1)为奇函数;(2)证明见解析;(3).【解析】(Ⅰ)求出定义域为{x|x≠0且x∈R},关于原点对称,再计算f(-x),与f(x)比较即可得到奇偶性;(Ⅱ)运用单调性的定义,注意作差、变形、定符号、下结论等步骤;(Ⅲ)讨论x>0,x<0,求出f(x)的零点,再由单调性即可解得所求取值范围试题解析:(1)定义域为{x|x≠0且x∈R},关于原点对称,,所以为奇函数;(2)任取,所以在为单调增函数;(3)解得,所以零点为,当时,由(2)可得的的取值范围为,的的取值范围为,又该函数为奇函数,所以当时,由(2)可得的的取值范围为,综上:所以解集为.19、(1)最小正周期,最大值为;(2)在单调递增,在单调递减.【解析】(1)由条件利用三角恒等变换化简函数,再利用正弦函数的周期性和最值求得的最小正周期和最大值;(2)根据,利用正弦函数的单调性,分类讨论求得的单调性.【详解】(1),则的最小正周期为,当,即时,取得最大值为;(2)当时,,则当,即时,为增函数;当时,即时,为减函数,在单调递增,在单调递减.【点睛】本题考查正弦函数的性质,解题的关键是利用三角恒等变换化简函数.20、(1),(2)【解析】(1)先将解析式化成正弦型函数,然后利用整体代换即可求得对称轴方程.(2)方程有两个不同的实数根转化成图像与有两个交点即可求得实数的取值范围【小问1详解】,由,,得,故的图象的对称轴方程为,【小问2详解】因为,当时,不满足题意;当时,可得.画出函数在上的图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度共享人力资源合作合同书模板版
- 2024年家具交易协议模板版
- 2024年人工智能研发与运用合同
- 2024年室内地弹门建设协议细则版B版
- 2024国际出口贸易协议模板版
- 2024年幕墙干挂石材与钢结构安装工程协议范本版B版
- 2024土石方基础处理劳务施工合作合同版B版
- 2024全新企业人员派遣协议样本下载一
- 2024年外墙专业喷涂作业协议样本版B版
- 2024年度分期偿还债务协议样本版B版
- 2024年第九届“学宪法、讲宪法”知识竞赛题库(附答案)
- 2025届高考日语新题型助词专项练习【三】
- 舞台人生:走进戏剧艺术学习通超星期末考试答案章节答案2024年
- 2024年新冀教版七年级英语上册全册教学课件
- 江苏省2024年中考数学试卷九套合卷【附答案】
- 《积极心理学(第3版)》 课件 第4章 乐观
- GB/T 23862-2024文物包装与运输规范
- 【初中道德与法治课教学导入问题的调查报告7800字(论文)】
- 英语语法教案设计-新编英语语法第6版
- 智能制造装备设计与故障诊断课件第7章-智能故障诊断技术
- 大学生心理健康智慧树知到期末考试答案章节答案2024年中北大学
评论
0/150
提交评论