(常考题)人教版初中数学八年级数学上册第三单元《轴对称》测试卷_第1页
(常考题)人教版初中数学八年级数学上册第三单元《轴对称》测试卷_第2页
(常考题)人教版初中数学八年级数学上册第三单元《轴对称》测试卷_第3页
(常考题)人教版初中数学八年级数学上册第三单元《轴对称》测试卷_第4页
(常考题)人教版初中数学八年级数学上册第三单元《轴对称》测试卷_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、选择题1.若,是等腰的两边长,且满足,此三角形的周长是()A.13 B.13或17 C.17 D.202.以下尺规作图中,点为线段边上一点,一定能得到线段的是()A. B.C. D.3.如图,已知中,点是射线上的两个动点(点在点的右侧).且连结,若,.则关于的函数关系式是()A. B.C. D.4.如图,在中,,以为圆心,任意长为半径画弧分别交于点和,再分别以为圆心,大于的长为半径画弧,两弧交于点,连接,并延长交于点,则下列说法中正确的个数是()①是的平分线;②;③点在的垂直平分线上﹔④若,则点到的距离是,A. B. C. D.5.如图,等边的顶点,,规定把等边“先沿轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,顶点C的坐标为()A. B. C. D.6.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法:①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.其中正确的是()A.①②③④ B.①②③ C.②④ D.①③7.如图,在△ABC纸片中,AB=9cm,BC=5cm,AC=7cm,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△ADE的周长为是()A.9cm B.11cm C.12cm D.14cm8.下列推理中,不能判断是等边三角形的是()A. B.C. D.,且9.如图,C是线段AB上的一点,和都是等边三角形,AE交CD于M,BD交CE于N,交AE于,则①;②;③;④;⑤是等边三角形.其中,正确的有()A.2个 B.3个 C.4个 D.5个10.如图,是一个3×4的网格(由12个小正方形组成,虚线交点称之格点)图中有一个三角形,三个顶点都在格点上,在网格中可以画出()个与此三角形关于某直线对称的格点三角形.A.6 B.7 C.8 D.911.如图,,,则有()A.与互相垂直平分 B.垂直平分C.平分 D.垂直平分12.如图,在等腰中,,垂直平分线交于点,交于点,的垂直平分线交于点,交于点,连接,,则()A. B. C. D.二、填空题13.如图,已知,点在边上,,点在边上,,若则的长是__________.14.如图,在平面直角坐标系中,直线与轴交于点,与轴交点于,且,以为边长作等边三角形,过点作平行于轴,交直线于点,以为边长作等边三角形,过点作平行于轴,交直线于点,以为边长作等边三角形,…,按此规律进行下去,则点的横坐标是______.15.如图,中,,点D在线段上(不与点重合).作法如下:①连接,作的垂直平分线分别交直线于点,连接,则;②过点D作的平行线交于点P,在线段上截取,使,连接,则;③过点D作的平行线交于点P,过点D作的平行线交于点Q,连接,则;④过点D作的平行线交于点Q,在直线上取一点P,连接,使,连接,则.以上说法一定成立的是__________.(填写正确的序号)16.如图,在中,D是上一点,,则________°.17.如图在钝角△ABC中,已知∠BAC=135°,边AB、AC的垂直平分线分别交BC于点D、E,连接AD、AE,则∠DAE=_____18.如图,在锐角△ABC中,AB=,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是_____________.19.如图,∠AOB=45°,OC平分∠AOB,点M为OB上一定点,P为OC上的一动点,N为OB上一动点,当PM+PN最小时,则∠PMO的度数为___________.20.如图,在等边三角形中,平分交于点M.(1)的大小=__________(度);(2)的大小=__________(度);(3)已知,点D为射线上一点,作∠DCE=,,连接交射线于点F,连接,当以B,D,M为顶点的三角形与全等时,线段的长为__________.三、解答题21.如图,,点在边上,和相交于点.(1)求证:(2)若,求的度数.22.如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:(1)Rt△ABF≌Rt△DCE;(2)OE=OF.23.如图:已知中:(1)尺规作图:过点作(不写作法,保留作图痕迹);(2)求证:是的一个外角角平分线.24.已知是等边三角形,点D是的中点,点P在射线上,点Q在线段上,.(1)如图1,若点Q与点B重合,求证:;(2)如图2,若点P在线段上,,求的值.25.已知:,点在直线上,位置如图所示,且.(1)求证:;(2)若平分,求证:垂直平分线段.26.(1)如图①,已知:在中,,,直线经过点,直线,直线,垂足分别为点、.求证:.(2)如图②,将(1)中的条件改为:在中,,、、三点都在直线上,并且有,其中为任意锐角或钝角.请问结论是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图③,、是、、三点所在直线上的两动点(、、三点互不重合),点为平分线上的一点,且和均为等边三角形,连接、,若,试判断的形状.(不需要说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据绝对值非负性的性质以及平方的非负性可知a和b的值,然后根据等腰三角形的性质分情况计算即可;【详解】∵,∴a=3,b=7,若腰为3时,3+3<7,三角形不成立;若腰为7时,则周长为7+7+3=17,故选:C.【点睛】本题考查了非负性的性质以及等腰三角形的性质,熟练掌握知识点是解题的关键;.2.D解析:D【分析】点D到点A、点B的距离相等可知点D在线段AB的垂直平分线上,据此可得答案.【详解】解:∵点D到点A、点B的距离AD=BD,∴点D在线段AB的垂直平分线上,故选择:D.【点睛】本题主要考查作图−复杂作图,解题的关键是掌握线段中垂线的性质与尺规作图.3.B解析:B【分析】根据等腰三角形的性质得出∠ACB=∠ABC=x+∠BCE和∠D=∠DCE=y+∠BCE,由三角形的外角性质得出∠ABC=∠D+∠BCD,即x+∠BCE=y+∠BCE+y,即x=2y,得出关于的函数关系式.【详解】解:∵,,∴∠ACB=∠ABC=x+∠BCE,∵,∴∠D=∠DCE=y+∠BCE,∵∠ABC是△BCD的一个外角,∴∠ABC=∠D+∠BCD,即x+∠BCE=y+∠BCE+y,即x=2y,∴,故选:B.【点睛】本题主要考查了等腰三角形的性质,三角形的外角性质,三角形的外角等于它不相邻的两个内角和.熟练掌握并运用各性质是解题的关键.4.B解析:B【分析】先根据三角形内角和计算出∠BAC=60°,再利用基本作图对①进行判断;利用∠BAD=∠CAD=30°得到∠ADC=60°,则可对②进行判断;利用∠B=∠BAD得到DA=DB,根据线段垂直平分线的性质定理的逆定理可对③进行判断.利用30度角所对的直角边是斜边的一半、三角形的面积计算公式即可得出两个三角形的面积之比.【详解】解:由作法得,AD平分∠BAC,所以①正确;∵∠C=90°,∠B=30°,∴∠BAC=60°,∴∠BAD=∠CAD=×60°=30°,∴∠ADC=90°-∠CAD=60°,所以②正确;∵∠B=∠BAD,∴DA=DB,∴点D在AB的垂直平分线上,所以③正确;在直角△ACD中,∠CAD=30°,∴CD=AD,∴BC=CD+BD=AD+AD=AD,.∴,∴,故④错误.所以,正确的结论有3个故选:B.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时需要熟悉等腰三角形的判定与性质.5.D解析:D【分析】先求出点C坐标,第一次变换,根据轴对称判断出点C变换后在x轴下方然后求出点C纵坐标,再根据平移的距离求出点C变换后的横坐标,最后写出第一次变换后点C坐标,同理可以求出第二次变换后点C坐标,以此类推可求出第n次变化后点C坐标.【详解】∵△ABC是等边三角形AB=3-1=2∴点C到x轴的距离为1+,横坐标为2∴C(2,)由题意可得:第1次变换后点C的坐标变为(2-1,),即(1,),第2次变换后点C的坐标变为(2-2,),即(0,)第3次变换后点C的坐标变为(2-3,),即(-1,)第n次变换后点C的坐标变为(2-n,)(n为奇数)或(2-n,)(n为偶数),∴连续经过2021次变换后,等边的顶点的坐标为(-2019,),故选:D.【点睛】本题考查了利用轴对称变换(即翻折)和平移的特点求解点的坐标,在求解过程中找到规律是关键.6.B解析:B【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC=∠CAD,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠FAG=∠ACD,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可.【详解】∵BE是中线,∴AE=CE,∴△ABE的面积=△BCE的面积(等底等高的三角形的面积相等),故①正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故②正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD=2∠ACF,即∠FAG=2∠ACF,故③正确;根据已知条件不能推出∠HBC=∠HCB,即不能推出BH=CH,故④错误;故选:B.【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键,题目比较好,属于中考题型.7.B解析:B【分析】根据折叠的性质得到:DE=CD,BE=BC=5cm,求出AE=4cm,根据△ADE的周长为AD+DE+AE=AC+AE代入数值计算即可得解.【详解】由折叠得:DE=CD,BE=BC=5cm,∵AB=9cm,∴AE=AB-BE=9cm-5cm=4cm,∴△ADE的周长为AD+DE+AE=AC+AE=7cm+4cm=11cm,故选:B.【点睛】此题考查折叠的性质:折叠前后对应边相等,正确理解折叠的性质是解题的关键.8.D解析:D【分析】根据等边三角形的定义、判定定理以及三角形内角和定理进行判断.【详解】A、由“三个角都相等的三角形是等边三角形”可以判断△ABC是等边三角形,故本选项不符合题意;B、由“有一个角是60°的等腰三角形是等边三角形”可以判断△ABC是等边三角形,故本选项不符合题意;C、由“∠A=60°,∠B=60°”可以得到“∠A=∠B=∠C=60°”,则由“三个角都相等的三角形是等边三角形”可以判断△ABC是等边三角形,故本选项不符合题意;D、由“AB=AC,且∠B=∠C”只能判定△ABC是等腰三角形,故本选项符合题意.故选:D.【点睛】本题主要考查了等边三角形的判定和三角形内角和定理,属于基础题.(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.9.C解析:C【分析】易证△ACE≌△DCB,可得①正确;即可求得∠AOB=120°,可得③错误;再证明△ACM≌△DCN,可得②④正确和CM=CN,即可证明⑤正确;即可解题.【详解】解:∵和都是等边三角形∵∠ACD=∠BCE=60°,∴∠DCE=60°,在△ACE和△DCB中,,∴△ACE≌△DCB(SAS),∴∠BDC=∠EAC,DB=AE,①正确;∠CBD=∠AEC,∵∠AOB=180°−∠OAB−∠DBC,∴∠AOB=180°−∠AEC−∠OAB=120°,③错误;在△ACM和△DCN中,,∴△ACM≌△DCN(ASA),∴AM=DN,④正确;∠AMC=∠DNC,②正确;CM=CN,∵∠ACD=∠BCE=60°,∴∠MCN=180°-∠ACD-∠BCE=60°,∴△CMN是等边三角形,⑤正确;故有①②④⑤正确.故选:C.【点睛】本题考查了全等三角形的判定和全等三角形对应边、对应角相等的性质,本题中求证△ACE≌△DCB和△ACM≌△DCN是解题的关键.10.B解析:B【分析】先确定对称轴,再找到对称点进而可以找到符合题意的对称三角形即可.【详解】解:如图,左右对称的有4个,如图,上下对称的有1个,如图,关于正方形的对角线对称的有2个,∴一共有7个与原三角形关于某直线对称的格点三角形,故选:B.【点睛】本题考查了轴对称图形的性质,找到正确的对称轴,画出相应的对称三角形是解决本题的关键.11.D解析:D【分析】根据线段垂直平分线的判定定理解答.【详解】∵,,∴垂直平分CD,故D正确,A、B错误,OC不平分∠ACB,故C错误,故选:D.【点睛】此题考查线段垂直平分线的判定:到线段两个端点距离相等的点在这条线段的垂直平分线上.12.C解析:C【分析】根据等腰,,得到AB=CB,∠A=∠C=,由DE垂直平分AB,求得∠ABE=,同理:,根据∠EBQ=∠ABC-∠ABE-∠QBC计算得出答案.【详解】在等腰中,,∴AB=CB,∠A=∠C=,∵DE垂直平分AB,∴AE=BE,∴∠ABE=,同理:,∴∠EBQ=∠ABC-∠ABE-∠QBC=,故选:C.【点睛】此题考查等腰三角形的性质,线段垂直平分线的性质,三角形的内角和定理,熟记线段垂直平分线的性质是解题的关键.二、填空题13.5【分析】作PH⊥MN于H如图根据等腰三角形的性质得MH=NH=MN=15在Rt△POH中由∠POH=60°得到∠OPH=30°则根据在直角三角形中30°角所对的直角边等于斜边的一半可得OH=OP=解析:5【分析】作PH⊥MN于H,如图,根据等腰三角形的性质得MH=NH=MN=1.5,在Rt△POH中由∠POH=60°得到∠OPH=30°,则根据在直角三角形中,30°角所对的直角边等于斜边的一半可得OH=OP=5,然后计算OH-MH即可.【详解】作PH⊥MN于H,如图,∵PM=PN,∴MH=NH=MN=1.5,在Rt△POH中,∵∠POH=60°,∴∠OPH=30°,∴OH=OP=×10=5,∴OM=OH-MH=5-1.5=3.5.故答案为:3.5.【点睛】本题考查了含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.也考查了等腰三角形的性质.14.5【分析】过A1作A1A⊥OB1于A过A2作A2B⊥A1B2于B过A3作A3C⊥A2B3于C根据等边三角形的性质以及含30°角的直角三角形的性质分别求得A1的横坐标为A2的横坐标为A3的横坐标为进而解析:5【分析】过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,,A2的横坐标为,A3的横坐标为,进而得到An的横坐标为,据此可得点A6的横坐标.【详解】解:如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,∵°,∴∠OB1D=30°,∵A1B2//x轴,∴∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1=,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2=,同理可得,A4的横坐标为+1+2+4=,由此可得,An的横坐标为,∴点A6的横坐标是,故答案为.【点睛】本题是一道找规律问题,涉及到等边三角形的性质、含30度角的直角三角形,解题的关键要利用等边三角形的性质总结出关于点A的系列点的规律.15.①②③【分析】根据题意画出图形再根据垂直平分线的性质平行线的性质和三角形全等的判定可以得证【详解】解:①如图∵PQ为AD的垂直平分线∴PA=PDQA=QD∴在△APQ和△DPQ中∴△APQ≌△DPQ解析:①②③【分析】根据题意画出图形,再根据垂直平分线的性质,平行线的性质和三角形全等的判定可以得证.【详解】解:①如图,∵PQ为AD的垂直平分线,∴PA=PD,QA=QD,∴在△APQ和△DPQ中,,∴△APQ≌△DPQ(SSS),①正确;②如图,∵PD∥AC,∴∠DPQ=∠AQP,∴在△APQ和△DQP中,,∴△APQ≌△DQP(SAS),②正确;③如图,∵PD∥AC,∴∠DPQ=∠AQP,同理∠DQP=∠APQ,∴在△APQ和△DQP中,∴△APQ≌△DQP(ASA),③正确;④如图,△APQ≌△DPQ不成立,④错误;故答案为①②③.【点睛】本题考查三角形与平行线的综合应用,熟练掌握垂直平分线的性质,平行线的性质和三角形全等的判定是解题关键.16.25【分析】设∠ADC=α然后根据AC=AD=DB∠BAC=105°表示出∠B和∠BAD的度数最后根据三角形的内角和定理求出∠ADC的度数进而求得∠B的度数即可【详解】解:∵AC=AD=DB∴∠B=解析:25【分析】设∠ADC=α,然后根据AC=AD=DB,∠BAC=105°,表示出∠B和∠BAD的度数,最后根据三角形的内角和定理求出∠ADC的度数,进而求得∠B的度数即可.【详解】解:∵AC=AD=DB,∴∠B=∠BAD,∠ADC=∠C,设∠ADC=α,∴∠B=∠BAD=,∵∠BAC=105°,∴∠DAC=105°﹣,在△ADC中,∵∠ADC+∠C+∠DAC=180°,∴2α+105°﹣=180°,解得:α=50°,∴∠B=∠BAD==25°,故答案为:25.【点睛】本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.17.90°【分析】根据等腰三角形的性质和线段垂直平分线的性质即可得到结论【详解】解:连接DAEA如图∵∠BAC=135°∴∠B+∠C=180°-135°=45°∵DF是AB的垂直平分线EG是AC的垂直平解析:90°【分析】根据等腰三角形的性质和线段垂直平分线的性质即可得到结论.【详解】解:连接DA、EA,如图,∵∠BAC=135°,∴∠B+∠C=180°-135°=45°,∵DF是AB的垂直平分线,EG是AC的垂直平分线,∴DA=DB,EA=EC,∴∠B=∠DAB,∠C=∠EAC,∴∠DAB+∠EAC=∠B+∠C=45°,∴∠DAE=∠BAC–(∠DAB+∠EAC)=135°-45°=90°.故答案为:90°.【点睛】本题考查线段的垂直平分线的性质,解题的关键是熟练掌握线段的垂直平分线的性质.18.6【分析】作BH⊥AC垂足为H交AD于M′点过M′点作M′N′⊥AB垂足为N′则BM′+M′N′为所求的最小值再根据AD是∠BAC的平分线可知M′H=M′N′再由锐角三角函数的定义即可得出结论【详解解析:6【分析】作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值,再根据AD是∠BAC的平分线可知M′H=M′N′,再由锐角三角函数的定义即可得出结论.【详解】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=,∠BAC=45°,∴BH=AH∴∴BH=6.∵BM+MN的最小值是BM′+M′N′=BM′+M′H=BH=6.故答案为6.【点睛】本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.19.45°【分析】找到点M关于OC对称点M′过点M′作M′N⊥OB于点N交OC于点P则此时PM+PN的值最小再根据角平分线的性质及三角形内角和即可得出答案【详解】解:如图找到点M关于OC对称点M′过点M解析:45°【分析】找到点M关于OC对称点M′,过点M′作M′N⊥OB于点N,交OC于点P,则此时PM+PN的值最小,再根据角平分线的性质及三角形内角和即可得出答案.【详解】解:如图,找到点M关于OC对称点M′,过点M′作M′N⊥OB于点N,交OC于点P,则此时PM+PN的值最小.∵PM=PM′,∴此时PM+PN=PM′+PN′=M′N′,∵点M与点M′关于OC对称,OC平分∠AOB,∴OM=OM′,∵∠AOB=45°,∴∠PM'O=∠AOB=45°,∴∠PMO=∠PM'O=45°,故答案为:45°.【点睛】本题考查了利用轴对称的知识寻找最短路径的知识,涉及到两点之间线段最短、垂线段最短的知识,有一定难度,正确确定点P及点N的位置是关键.20.2或6或【分析】(1)根据等边三角形的性质及角平分线的性质求解;(2)根据等边三角形的三线合一的性质解答;(3)根据题意分两种情况:当点D在线段CM上时当点D在线段CM的延长线上时分别画出图形利用全解析:2或6或【分析】(1)根据等边三角形的性质及角平分线的性质求解;(2)根据等边三角形的三线合一的性质解答;(3)根据题意分两种情况:当点D在线段CM上时,当点D在线段CM的延长线上时,分别画出图形,利用全等三角形的性质解答.【详解】(1)∵△是等边三角形,∴∠ACB=,∵平分,∴∠ACM=∠ACB=,故答案为:;(2)∵△是等边三角形,平分,∴CM⊥AB,∴∠AMC=,故答案为:;(3)∵∠DCE=,CD=CE,∴△CDE是等边三角形,∴DE=CE=CD,∵∠BCM=∠ACM=,∴∠BCE=,∴CF平分∠DCE,∵CD=CE,∴CB垂直平分DE,①当点D在线段CM上时,当△BDM≌△BEF时,如图1,∴BF=BM=2,∴CF=CB-BF=4-2=2;当△BDM≌△EBF时,如图1,则EF=BM=2,∴CD=DE=4,,∵AB=4,CD<CM<4,∴此种情况不成立,舍去;②当点D在线段CM的延长线上时,当△BDM≌△BEF时,如图2,∴BF=BM=2,∴CF=BC+BF=4+2=6,;当△BDM≌△EBF时,如图3,则EF=BM=2,∴CE=2EF=4,∴,故答案为:2或6或..【点睛】此题考查等边三角形的性质,利用三线合一的性质进行证明,全等三角形的性质,熟记等边三角形的性质是解题的关键.三、解答题21.(1)见解析;(2)40°【分析】(1)由得到,然后根据ASA即可证明;(2)由(1)得DE=CE,,由三角形内角和即可求出的度数.【详解】解:,又;;【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形的内角和定理,解题的关键是掌握全等三角形的判定和性质进行解题.22.(1)见解析;(2)见解析【分析】(1)由于△ABF与△DCE是直角三角形,根据直角三角形全等的判定的方法即可证明;(2)先根据三角形全等的性质得出∠AFB=∠DEC,再根据等腰三角形的性质得出结论.【详解】证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形,在Rt△ABF和Rt△DCE中∵,∴Rt△ABF≌Rt△DCE(HL);(2)∵Rt△ABF≌Rt△DCE(已证),∴∠AFB=∠DEC,∴OE=OF.【点睛】本题主要考查全等三角形的判定和性质以及等腰三角形的判定定理,掌握HL判断两个直角三角形全等,是解题的关键.23.(1)见解析;(2)见解析.【分析】(1)作∠CAE=∠C即可;(2)延长BA,根据两直线平行,同位角相等,有∠EAF=∠B,由(1)可知∠CAE=∠C,再根据AB=AC,可得∠B=∠C,等量替换之后即可得证.【详解】(1)射线AE为所求;(2)证明:如图所示,延长BA,∵,∴∠EAF=∠B,∠CAE=∠C,∵AB=AC,∴∠B=∠C,∴∠EAF=∠CAE,∴是的一个外角角平分线.【点睛】本题考查了平行线的性质和判定,等腰三角形的性质和角平分线的判定等知识,掌握相关知识是解题的关键.24.(1)证明见解析;(2)4.【分析】(1)由等边三角形的性质证明再利用三角形的内角和定理求解从而可得结论;(2)过点D作交于点E,先证明为等边三角形,再证明,可得从而可得答案.【详解】证明:(1)∵为等边三角形,∴∵D为的中点,∴平分,∴.∵,∴,∴,∴.(2)过点D作交于点E.∵为等边三角形,,点D是的中点,∴.∵,∴.,∴为等边三角形,,∴,∴.∵,∴.∵,∴,∴,∴.【点睛】本题考查的是等腰三角形的判定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论