版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省三校2025届高二数学第一学期期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过椭圆右焦点作x轴的垂线,并交C于A,B两点,直线l过C的左焦点和上顶点.若以线段AB为直径的圆与有2个公共点,则C的离心率e的取值范围是()A. B.C. D.2.若数列{an}满足……,则称数列{an}为“半差递增”数列.已知“半差递增”数列{cn}的前n项和Sn满足,则实数t的取值范围是()A. B.(-∞,1)C. D.(1,+∞)3.平行直线:与:之间的距离等于()A. B.C. D.4.已知抛物线的焦点为,为坐标原点,点在抛物线上,且,点是抛物线的准线上的一动点,则的最小值为().A. B.C. D.5.如图,在四面体中,,,,,为线段的中点,则等于()A B.C. D.6.已知直线与抛物线C:相交于A,B两点,O为坐标原点,,的斜率分别为,,则()A. B.C. D.7.已知两个向量,若,则的值为()A. B.C.2 D.88.已知数列满足且,则()A.是等差数列 B.是等比数列C.是等比数列 D.是等比数列9.若直线与双曲线相交,则的取值范围是A. B.C. D.10.若平面的一个法向量为,点,,,,到平面的距离为()A.1 B.2C.3 D.411.已知两个向量,,且,则的值为()A.-2 B.2C.10 D.-1012.设数列的前项和为,当时,,,成等差数列,若,且,则的最大值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知定点,动点分别在直线和上运动,则的周长取最小值时点的坐标为__________.14.已知.若在定义域内单调递增,则实数的取值范围为______.15.某商场对华为手机近28天的日销售情况进行统计,得到如下数据,t36811ym357利用最小二乘法得到日销售量y(百部)与时间t(天)的线性回归方程为,则表格中的数据___________.16.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面是平行四边形,,M,N分别为的中点,.(1)证明:;(2)求直线与平面所成角的正弦值.18.(12分)某高校自主招生考试分笔试与面试两部分,每部分考试成绩只记“通过”与“不通过”,两部分考试都“通过”者,则考试“通过”,并给予录取.甲、乙两人在笔试中“通过”的概率依次为,在面试中“通过”的概率依次为,笔试和面试是否“通过”是独立的,那么(1)甲、乙两人都参加此高校的自主招生考试,谁获得录取的可能性大?(2)甲、乙两人都参加此高校的自主招生考试,求恰有一人获得录取的概率.19.(12分)已知函数在处的切线垂直于直线.(1)求(2)求的单调区间20.(12分)已知数列是公比为正数的等比数列,且,.(1)求数列的通项公式;(2)若,求数列的前项和.21.(12分)已知函数是定义在实数集上的奇函数,且当时,(1)求的解析式;(2)若在上恒成立,求的取值范围22.(10分)已知等差数列}的公差为整数,为其前n项和,,(1)求{}的通项公式:(2)设,数列的前n项和为,求
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求得以为直径的圆的圆心和半径,求得直线的方程,利用圆心到直线的距离小于半径列不等式,化简后求得椭圆离心率的取值范围.【详解】椭圆的左焦点,右焦点,上顶点,,所以为直径的圆的圆心为,半径为.直线的方程为,由于以线段为直径的圆与相交,所以,,,,,所以椭圆的离心率的取值范围是.故选:A2、A【解析】根据,利用递推公式求得数列的通项公式.再根据新定义的意义,代入解不等式即可求得实数的取值范围.【详解】因为所以当时,两式相减可得,即,所以数列是以公比的等比数列当时,所以,则由“差半递增”数列的定义可知化简可得解不等式可得即实数的取值范围为故选:A.3、B【解析】先由两条直线平行解出,再按照平行线之间距离公式求解.【详解】,则:,即,距离为.故选:B.4、A【解析】求出点坐标,做出关于准线的对称点,利用连点之间相对最短得出为的最小值【详解】解:抛物线的准线方程为,,到准线的距离为2,故点纵坐标为1,把代入抛物线方程可得不妨设在第一象限,则,点关于准线的对称点为,连接,则,于是故的最小值为故选:A【点睛】本题考查了抛物线的简单几何性质,属于基础题5、D【解析】根据空间向量的线性运算求解【详解】由已知,故选:D6、C【解析】设,,由消得:,又,由韦达定理代入计算即可得答案.【详解】设,,由消得:,所以,故.故选:C【点睛】本题主要考查了直线与抛物线的位置关系,直线的斜率公式,考查了转化与化归的思想,考查了学生的运算求解能力.7、B【解析】直接利用空间向量垂直的坐标运算计算即可.【详解】因为,所以,即,解得.故选:B8、D【解析】由,化简得,结合等比数列、等差数列的定义可求解.【详解】由,可得,所以,又由,,所以是首项为,公比为2的等比数列,所以,,,,所以不是等差数列;不等于常数,所以不是等比数列.故选:D.9、C【解析】联立直线和双曲线的方程得到,即得的取值范围.【详解】联立直线和双曲线的方程得当,即时,直线和双曲线的渐近线重合,所以直线与双曲线没有公共点.当,即时,,解之得.故选:C.【点睛】本题主要考查直线和双曲线的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力.10、B【解析】求出,点A到平面的距离:,由此能求出结果【详解】解:,,,,∴为平面的一条斜线,且∴点到平面的距离:故选:B.11、C【解析】根据向量共线可得满足的关系,从而可求它们的值,据此可得正确的选项.【详解】因为,故存在常数,使得,所以,故,所以,故选:C.12、A【解析】根据等差中项写出式子,由递推式及求和公式写出和,进而得出结果.【详解】解:由,,成等差数列,可得,则,,,可得数列中,每隔两项求和是首项为,公差为的等差数列.则,,则的最大值可能为.由,,可得.因为,,,即,所以,则,当且仅当时,,符合题意,故的最大值为.故选:A.【点睛】本题考查等差数列的性质和递推式的应用,考查分析问题能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】作点分别关于直线和的对称点,根据对称性即可求出三角形周长的最小值,利用三点共线求出的坐标.【详解】如图所示:定点关于函数对称点,关于轴的对称点,当与直线和的交点分别为时,此时的周长取最小值,且最小值为此时点的坐标满足,解得,即点.故答案为:.14、【解析】将问题转化为在上恒成立,再分离参数转化为求函数的最值问题即可得到实数的取值范围【详解】因为,所以;因为在内单调递增,所以在上恒成立,即在上恒成立,因为,所以.故答案为:15、1【解析】根据已知条件,求出,的平均值,再结合线性回归方程过样本中心,即可求解【详解】解:由表中数据可得,,,线性回归方程为,,解得故答案为:116、相交【解析】由题意知,两圆的圆心分别为(-2,0),(2,1),故两圆的圆心距离为,两圆的半径之差为1,半径之和为5,而1<<5,所以两圆的位置关系为相交三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】(1)要证,可证,由题意可得,,易证,从而平面,即有,从而得证;(2)取中点,根据题意可知,两两垂直,所以以点为坐标原点,建立空间直角坐标系,再分别求出向量和平面的一个法向量,即可根据线面角的向量公式求出【详解】(1)中,,,,由余弦定理可得,所以,.由题意且,平面,而平面,所以,又,所以(2)由,,而与相交,所以平面,因为,所以,取中点,连接,则两两垂直,以点为坐标原点,如图所示,建立空间直角坐标系,则,又为中点,所以.由(1)得平面,所以平面的一个法向量从而直线与平面所成角的正弦值为【点睛】本题第一问主要考查线面垂直的相互转化,要证明,可以考虑,题中与有垂直关系直线较多,易证平面,从而使问题得以解决;第二问思路直接,由第一问的垂直关系可以建立空间直角坐标系,根据线面角的向量公式即可计算得出18、(1)甲获得录取的可能性大;(2)【解析】(1)利用独立事件的乘法公式求出甲、乙两人被录取的概率并比较大小,即得结果.(2)应用对立事件、独立事件的概率求法,结合互斥事件的加法公式求恰有一人获得录取的概率.【小问1详解】记“甲通过笔试”为事件,“甲通过面试”为事件,“甲获得录取”为事件A,“乙通过笔试”为事件,“乙通过面试”为事件,“乙获得录取”为事件B,则,,即,所以甲获得录取的可能性大.【小问2详解】记“甲乙两人恰有一人获得录取”为事件C,则.19、(1);(2)在内单调递减,在内单调递增【解析】(1)由题意求导可得,代入可得(1),从而求,进而求切线方程;(2)的定义域为,,从而求单调性【详解】解:(1)因为在处切线垂直于,所以(2)因为的定义域为当时,当时,在内单调递减,在内单调递增【点睛】本题考查导数的几何意义,利用导数研究函数的单调性,属于基础题.20、(1);(2).【解析】(1)根据题意,通过解方程求出公比,即可求解;(2)根据题意,求出,结合组合法求和,即可求解.小问1详解】根据题意,设公比为,且,∵,,∴,解得或(舍),∴.【小问2详解】根据题意,得,故,因此.21、(1),(2)实数的取值范围是【解析】(1)根据函数奇偶性求解析式;(2)将恒成立转化为令,恒成立,讨论二次函数系数,结合根的分布.【详解】解:(1)因为函数是定义在实数集上的奇函数,所以,当时,则所以当时所以(2)因为时,在上恒成立等价于即在上恒成立令,则①当时,不恒成立,故舍去②当时必有,此时对称轴若即或时,恒成立因为,所以若即时,要使恒成立则有与矛盾,故舍去综上,实数的取值范围是【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于的方程(组),从而得到的解析式;(3)求函数解析式中参数的值:利用待定系数法求解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程承包简易协议书
- 足浴店员工劳动合同范本完整版
- 2024版高速公路工程知识产权合同:专利技术与著作权保护2篇
- 2024年度医疗机构建设项目合同2篇
- 军神课件教学课件
- 四年级品德知识课件
- 新版风险代理协议完整版
- 阅读胸片课件
- 2024版房屋装修设计合同3篇
- 对数函数课件
- 小学数学六年级上册《用百分数解决问题》(新人教版)课件
- 14《故都的秋》课件29张 高中语文统编版必修上册第七单元
- 临床医师甲乳外科进修总结
- 压力性损伤的预防
- 隧道施工现场通用检查表
- 高速公路施工道路安全管理措施教学课件
- 公司战略规划和落地方法之:五看三定工具解析课件
- 求平面直角坐标系中三角形的面积市公开课一等奖省名师优质课赛课一等奖课件
- 幼儿卫生学皮肤课件
- 维吾尔族服饰课件
- 高考作文指导系列:核心概念的界定课件23张
评论
0/150
提交评论