版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市莘庄中学2025届数学高一上期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数是偶函数,函数是奇函数,则()A.函数是奇函数 B.函数是偶函数C.函数是偶函数 D.函数是奇函数2.已知函数(其中为自然对数的底数,…),若实数满足,则()A. B.C. D.3.点M(1,4)关于直线l:x-y+1=0对称的点的坐标是()A.(4,1) B.(3,2)C.(2,3) D.(-1,6)4.已知角的终边过点,则()A. B.C. D.15.如图,一个直三棱柱形容器中盛有水,且侧棱.若侧面水平放置时,液面恰好过的中点,当底面ABC水平放置时,液面高为()A.6 B.7C.2 D.46.已知函数f(x)=若f(f(0))=4a,则实数a等于A. B.C.2 D.97.设,且,则等于()A.100 B.C. D.8.垂直于直线且与圆相切的直线的方程是AB.C.D.9.已知集合,,,则A. B.C. D.10.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用,分别表示乌龟和兔子所行的路程(为时间),则下图与故事情节相吻合的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数在区间是单调递增函数,则实数的取值范围是______12.《九章算术》是中国古代的数学名著,其中《方田》一章给出了弧田面积的计算方法.如图所示,弧田是由圆弧和其对弦围成的图形,若弧田所在圆的半径为6,弦的长是,则弧田的弧长为________;弧田的面积是________.13.设,则______.14.已知,且,则的最小值为____________.15.若在内有两个不同的实数值满足等式,则实数k的取值范围是_______16.若,则实数的值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,求值:(1);(2)2.18.已知函数,其中是自然对数的底数,(1)若函数在区间内有零点,求的取值范围;(2)当时,,,求实数的取值范围19.已知函数在上的最小值为(1)求在上的单调递增区间;(2)当时,求的最大值以及取最大值时的取值集合20.为迎接党的“十九大”胜利召开与响应国家交给的“提速降费”任务,某市移动公司欲提供新的资费套餐(资费包含手机月租费、手机拨打电话费与家庭宽带上网费).其中一组套餐变更如下:原方案资费手机月租费手机拨打电话家庭宽带上网费(50M)18元/月0.2元/分钟50元/月新方案资费手机月租费手机拨打电话家庭宽带上网费(50M)58元/月前100分钟免费,超过部分元/分钟(>0.2)免费(1)客户甲(只有一个手机号和一个家庭宽带上网号)欲从原方案改成新方案,设其每月手机通话时间为分钟(),费用原方案每月资费-新方案每月资费,写出关于函数关系式;(2)经过统计,移动公司发现,选这组套餐的客户平均月通话时间分钟,为能起到降费作用,求的取值范围21.已知函数是定义在上的奇函数,且.(1)确定函数的解析式并用定义证明在上是增函数(2)解不等式:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据奇偶性的定义判断即可;【详解】解:因为函数是偶函数,函数是奇函数,所以、,对于A:令,则,故是非奇非偶函数,故A错误;对于B:令,则,故为奇函数,故B错误;对于C:令,则,故为偶函数,故C正确;对于D:令,则,故为偶函数,故D错误;故选:C2、B【解析】化简得到,得到,进而得到,即可求解.【详解】由题意,函数,可得,可得,即,因为,所以.故选:B.3、B【解析】设出关于直线对称点的坐标,利用中点和斜率的关系列方程组,解方程组求得对称点的坐标.【详解】设关于直线对称点的坐标为,线段的中点坐标为,且在直线上,即①.由于直线的斜率为,所以线段的斜率为②.解由①②组成的方程组得,即关于直线对称点的坐标为.故选:B【点睛】本小题主要考查点关于直线的对称点的坐标的求法,考查方程的思想,属于基础题.4、B【解析】根据三角函数的定义求出,再根据二倍角余弦公式计算可得;【详解】解:∵角的终边过点,所以,∴,故故选:B5、A【解析】根据题意,当侧面AA1B1B水平放置时,水的形状为四棱柱形,由已知条件求出水的体积;当底面ABC水平放置时,水的形状为三棱柱形,设水面高为h,故水的体积可以用三角形的面积直接表示出,计算即可得答案【详解】根据题意,当侧面AA1B1B水平放置时,水的形状为四棱柱形,底面是梯形,设△ABC的面积为S,则S梯形=S,水的体积V水=S×AA1=6S,当底面ABC水平放置时,水的形状为三棱柱形,设水面高为h,则有V水=Sh=6S,故h=6故选A【点睛】本题考点是棱柱的体积计算,考查用体积公式来求高,考查转化思想以及计算能力,属于基础题6、C【解析】,选C.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.7、C【解析】由,得到,再由求解.【详解】因为,所以,则,所以,则,解得,故选:C8、B【解析】设所求直线方程为3x+y+c=0,则d=,解得d=±10.所以所求直线方程为3x+y+10=0或3x+y-10=0.9、D【解析】本题选择D选项.10、B【解析】分别分析乌龟和兔子随时间变化它们的路程变化情况,即直线的斜率变化即可.【详解】解:对于乌龟,其运动过程分为两段:从起点到终点乌龟没有停歇,一直以匀速前进,其路程不断增加;到终点后,等待兔子那段时间路程不变;对于兔子,其运动过程分三段:开始跑的快,即速度大,所以路程增加的快;中间由于睡觉,速度为零,其路程不变;醒来时追赶乌龟,速度变大,所以路程增加的快;但是最终是乌龟到达终点用的时间短.故选:B【点睛】本题考查利用函数图象对实际问题进行刻画,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】求出二次函数的对称轴,即可得的单增区间,即可求解.【详解】函数的对称轴是,开口向上,若函数在区间是单调递增函数,则,故答案为:12、①.②.【解析】在等腰三角形中求得,由扇形弧长公式可得弧长,求出扇形面积减去三角形面积可得弧田面积【详解】∵弧田所在圆的半径为6,弦的长是,∴弧田所在圆的圆心角,∴弧田的弧长为;扇形的面积为,三角形的面积为,∴弧田的面积为.故答案为:;13、1【解析】根据指数式与对数式的互化,得到,,再结合对数的运算法则,即可求解.【详解】由,可得,,所以.故答案为:.14、##2.5【解析】将变形为,利用基本不等式求得答案.【详解】由题意得:,当且仅当时取得等号,故答案为:15、【解析】讨论函数在的单调性即可得解.【详解】函数,时,单调递增,时,单调递减,,,,所以在内有两个不同的实数值满足等式,则,所以.故答案为:16、【解析】由指数式与对数式的互化公式求解即可【详解】因为,所以,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据已知可求出,将所求的式子化弦为切,即可求解;(2)引进分式,利用“1”的变化,将所求式子化为的齐次分式,化弦为切,即可求解.【详解】.(1);(2)2.【点睛】关键点睛:解决问题二的关键在于利用“1”的变化,将所求式子化为的齐次分式,化弦为切.18、(1);(2).【解析】(1)解法①:讨论或,判断函数的单调性,利用零点存在性定理即可求解;解法②:将问题转化为在区间上有解,即e有解,讨论或解方程即可求解.(2)解法①:分离参数可得,令,,求出的最大值即可求解;解法②:不等式转化为恒成立,令,,可得函数,,讨论或即可求解.【详解】(1)解法①:当时,,没有零点;当时,函数是增函数,则需要,解得.,满足零点存在定理.因此函数在区间内有一个零点综上所述,的取值范围为.解法②:的零点就是方程的解,即在区间上有解方程变形得,当时,方程无解,当时,解为,则,解得,综上所述,的取值范围为(2)解法①由题意知,,即因为,则,又,令,,则(当且仅当时等号成立),所以,即的取值范围是.解法②由题意知,,即,令,,即,当时,显然不成立,因此.对于函数,,,则,解得,即m的取值范围是.19、(1)单调递增区间(2)最大值为,此时的取值集合为【解析】(1)先由三角变换化简解析式,再由余弦函数的性质得出单调性;(2)由余弦函数的性质得出的值,进而再求最大值.【小问1详解】,令,,解得,所以的单调递增区间为【小问2详解】当时,,,解得,所以,当,,即,时,取得最大值,且最大值故的最大值为,此时的取值集合为20、(1);(2).【解析】(1)关键是求出原资费和新资费,原资费为68+0.2x,新资费是分段函数,x≤100时,为58,当x>100时,为,相减可得结论;(2)只要(1)中的y>0,则说明节省资费,列出不等式可得,注意当100<x≤400时,函数y为减函数,因此在x=400时取最小值,由此最小值>0,可解得范围试题解析:(1)i)当,ii)当,综上所述(未写扣一分)(2)由题意,恒成立,显然,当,,当,因为,为减函数所以当时,解得从而21、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024全新绿色环保产业项目合作协议3篇
- 洛阳职业技术学院《人文地理学》2023-2024学年第一学期期末试卷
- 2024全新环保产业劳动合同执行细则及环保责任承诺3篇
- 2025酒水购销合同范文
- 夏令营地活动赞助合同
- 企业新品发布会接待流程
- 2024年度购物中心健身中心特许经营合同3篇
- 集市绿色能源集贸市场管理办法
- 建筑印刷施工人工费合同
- 厨房装饰装修协议
- 《金属塑性加工原理》考试总复习题
- 中国心力衰竭诊断和治疗指南2024解读
- 国开《农村环境保护形成性考核册》形考1-3答案
- 工程实例:三峡工程施工导流讲解
- 企业如何应对自然灾害和突发事件风险
- 皮带机安装方案
- 学生会公寓部工作总结
- 教师如何处理学生的消极情绪
- 设备安全调试维修作业安全培训
- 苏轼的坎坷一生(被贬路线)课件
- 2024年心理咨询师题库及参考答案(考试直接用)
评论
0/150
提交评论