版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页汉中市重点中学2024年数学九上开学监测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列各组数中不能作为直角三角形三边长的是()A.5,13,12 B.3,1,2 C.6,7,10 D.3,4,52、(4分)由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:3:2C.a=2,b=3,c=4 D.(b+c)(b-c)=a²3、(4分)如图,在△ABC中,∠ACB=90°,分别以AB、BC、AC为底边在△ABC外部画等腰直角三角形,三个等腰直角三角形的面积分别是S1、S2、S3,则S1、S2、S3之间的关系是()A. B. C. D.4、(4分)如图,在中,是的中点,,,则的长为()A. B.4 C. D.5、(4分)下面与是同类二次根式的是()A. B. C. D.6、(4分)如图,在中,两个顶点在轴的上方,点的坐标是.以点为位似中心,在轴的下方作的位似,图形,使得的边长是的边长的2倍.设点的横坐标是-3,则点的横坐标是()A.2 B.3 C.4 D.57、(4分)如图,点,,,在一次函数的图象上,它们的横坐标分别是-1,0,3,7,分别过这些点作轴、轴的垂线,得到三个矩形,那么这三个矩形的周长和为()A. B.52 C.48 D.8、(4分)如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连接CD.若AB=4cm.则△BCD的面积为()A.4 B.2 C.3 D.2二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图是本地区一种产品30天的销售图象,图1是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图2是一件产品的销售利润z(单位,元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列正确结论的序号是____.①第24天的销售量为200件;②第10天销售一件产品的利润是15元;③第12天与第30天这两天的日销售利润相等;④第30天的日销售利润是750元.10、(4分)12位参加歌唱比赛的同学的成绩各不相同,按成绩取前6名进入决赛,如果小亮知道了自己的成绩后,要判断能否进入决赛,在平均数、众数、中位数和方差四个统计量中,小亮应该最关注的一个统计量是_____.11、(4分)若反比例函数y=的图象经过A(﹣2,1)、B(1,m)两点,则m=________.12、(4分)观察下面的变形规律:12+1=2-1,13+2=3-2,14+3=4-解答下面的问题:(1)若n为正整数,请你猜想1n+1(2)计算:(13、(4分)如图,购买“黄金1号”王米种子,所付款金额y元与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则购买1千克“黄金1号”玉米种子需付款___元,购买4千克“黄金1号”玉米种子需___元.三、解答题(本大题共5个小题,共48分)14、(12分)(课题研究)旋转图形中对应线段所在直线的夹角(小于等于的角)与旋转角的关系.(问题初探)线段绕点顺时针旋转得线段,其中点与点对应,点与点对应,旋转角的度数为,且.(1)如图(1)当时,线段、所在直线夹角为______.(2)如图(2)当时,线段、所在直线夹角为_____.(3)如图(3),当时,直线与直线夹角与旋转角存在着怎样的数量关系?请说明理由;(形成结论)旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角_____.(运用拓广)运用所形成的结论求解下面的问题:(4)如图(4),四边形中,,,,,,试求的长度.15、(8分)如图,在△ABC中,∠B=90°,点P从点A开始沿AB边向点B以1㎝/秒的速度移动,同时点Q从点B开始沿BC边向点C以2㎝/秒的速度移动.()(1)如果ts秒时,PQ//AC,请计算t的值.(2)如果ts秒时,△PBQ的面积等于S㎝2,用含t的代数式表示S.(3)PQ能否平分△ABC的周长?如果能,请计算出t值,不能,说明理由.16、(8分)如图,在四边形ABCD中,AD//BC,∠D=90°,E为边BC上一点,且EC=AD,连接(1)求证:四边形AECD是矩形;
(2)若AC平分∠DAB,AB=5,EC=2,求AE的长,17、(10分)如图,一块四边形的土地,其中∠BAD=90°,AB=4m,BC=12m,CD=13m,AD=3m.(1)试说明BD⊥BC;(2)求这块土地的面积.18、(10分)问题探究(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,是正方形内一定点,请在图②中作出两条直线(要求其中一条直线必须过点),使它们将正方形的面积四等分:问题解决(3)如图③,在四边形中,,点是的中点如果,且,那么在边上足否存在一点,使所在直线将四边形的面积分成相等的两部分?若存在,求出的长:若不存在,说明理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若是关于的一元二次方程的一个根,则____.20、(4分)将反比例函数的图像绕着原点O顺时针旋转45°得到新的双曲线图像(如图1所示),直线轴,F为x轴上的一个定点,已知,图像上的任意一点P到F的距离与直线l的距离之比为定值,记为e,即.(1)如图1,若直线l经过点B(1,0),双曲线的解析式为,且,则F点的坐标为__________.(2)如图2,若直线l经过点B(1,0),双曲线的解析式为,且,P为双曲线在第一象限内图像上的动点,连接PF,Q为线段PF上靠近点P的三等分点,连接HQ,在点P运动的过程中,当时,点P的坐标为__________.21、(4分)甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为________.(填“>”或“<”)22、(4分)为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.1,2.39,2.1,2.40,2.1.这组数据的中位数和众数分别是_____.23、(4分)如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PD=3cm,则PC的长为_____cm.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在平行四边形ABCD中(AB>AD),AF平分∠DAB,交CD于点F,DE平分∠ADC,交AB于点E,AF与DE交于点O,连接EF(1)求证:四边形AEFD为菱形;(2)若AD=2,AB=3,∠DAB=60°,求平行四边形ABCD的面积.25、(10分)五一期间,甲、乙两人分别骑自行车和摩托车从地出发前往地郊游,并以各自的速度匀速行驶,到达目的地停止,途中乙休息了一段时间,然后又继续赶路.甲、乙两人各自行驶的路程与所用时间之间的函数图象如图所示.(1)甲骑自行车的速度是_____.(2)求乙休息后所行的路程与之间的函数关系式,并写出自变量的取值范围.(3)为了保证及时联络,甲、乙两人在第一次相遇时约定此后两人之间的路程不超过.甲、乙两人是否符合约定,并说明理由.26、(12分)某市某水果批发市场某批发商原计划以每千克10元的单价对外批发销售某种水果.为了加快销售,该批发商对价格进行两次下调后,售价降为每千克6.4元.(1)求平均每次下调的百分率;(2)某大型超市准备到该批发商处购买2吨该水果,因数量较多,该批发商决定再给予两种优惠方案以供选择.方案一:打八折销售;方案二:不打折,每吨优惠现金1000元.试问超市采购员选择哪种方案更优惠?请说明理由.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、52+122=132,故不是直角三角形,故选项正确;B、32+12=22,故是直角三角形,故选项错误;C、62+72≠102,故是直角三角形,故选项错误;D、32+42=52,故是直角三角形,故选项错误.故选:C.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2、C【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【详解】A、∠A+∠B=∠C,可得∠C=90°,是直角三角形,错误;B、∠A:∠B:∠C=1:3:2,可得∠B=90°,是直角三角形,错误;C、∵22+32≠42,故不能判定是直角三角形,正确;D、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,即a2+c2=b2,故是直角三角形,错误;故选C.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3、B【解析】
根据勾股定理可得AB2=AC2+BC2,再根据等腰直角三角形的性质和三角形的面积公式计算,即可得到答案.【详解】解:如图,在Rt△ABC中,由勾股定理,得:AB2=AC2+BC2,∵△ABF、△BEC、△ADC都是等腰直角三角形,∴S1=AF2=AB2,S2=EC2=BC2,S3=AD2=AC2,∴S2+S3=BC2+AC2=(BC2+AC2)=AB2,∴S2+S3=S1.故选:B.本题考查了等腰直角三角形的性质和勾股定理以及三角形的面积等知识,属于基本题型,熟练掌握勾股定理和等腰直角三角形的性质是解题关键.4、D【解析】
根据相似三角形的判定和性质定理和线段中点的定义即可得到结论.【详解】解:∵∠ADC=∠BAC,∠C=∠C,
∴△BAC∽△ADC,
∴,
∵D是BC的中点,BC=6,
∴CD=3,
∴AC2=6×3=18,
∴AC=,
故选:D.本题考查相似三角形的判定和性质,线段中点的定义,熟练掌握相似三角形的判定和性质是解题的关键.5、B【解析】
根据同类二次根式的定义,先将各选项化为最简二次根式,再看被开方数是否相同即可.【详解】解:A、与被开方数不同,不是同类二次根式;B、与被开方数相同,是同类二次根式;C、=3与被开方数不同,不是同类二次根式;D、与被开方数不同,不是同类二次根式.此题主要考查了同类二次根式的定义即化成最简二次根式后,被开方数相同.这样的二次根式叫做同类二次根式.6、B【解析】
设点B′的横坐标为x,然后根据△A′B′C与△ABC的位似比为2列式计算即可求解.【详解】设点B′的横坐标为x,∵△ABC的边长放大到原来的2倍得到△A′B′C,点C的坐标是(-1,0),∴x-(-1)=2[(-1)-(-1)],即x+1=2(-1+1),解得x=1,所以点B的对应点B′的横坐标是1.故选B.本题考查了位似变换,坐标与图形的性质,根据位似比列出方程是解题的关键.7、C【解析】
根据一次函数的图像与直角坐标系坐标特点即可求解.【详解】由题意可得,.∴.故选C.此题主要考查一次函数的图像,解题的关键是熟知直角坐标系的特点.8、C【解析】
过D点作BE的垂线,垂足为F,由∠ABC=30°及旋转角∠ABE=150°可知∠CBE为平角.在Rt△ABC中,AB=4,∠ABC=30°,则AC=2,BC=2,由旋转的性质可知BD=BC=2,DE=AC=2,BE=AB=4,由面积法:DF×BE=BD×DE求DF,则S△BCD=×BC×DF.【详解】过D点作BE的垂线,垂足为F,∵∠ABC=30°,∠ABE=150°,∴∠CBE=∠ABC+∠ABE=180°.在Rt△ABC中,∵AB=4,∠ABC=30°,∴AC=2,BC=2,由旋转的性质可知:BD=BC=2,DE=AC=2,BE=AB=4,由DF×BE=BD×DE,即DF×4=2×2,解得:DF=,S△BCD=×BC×DF=×2×=3(cm2).故选C.本题考查了旋转的性质,解直角三角形的方法,解答本题的关键是围绕求△BCD的面积确定底和高的值,有一定难度.二、填空题(本大题共5个小题,每小题4分,共20分)9、①②④.【解析】
图1是产品日销售量y(单位:件)与时间t单位:天)的函数图象,观察图象可对①做出判断;通过图2求出z与t的函数关系式,求出当t=10时z的值,对②做出判断,通过图1求出当0≤t≤24时,产品日销售量y与时间t的函数关系式,分别求出第12天和第30天的销售利润,对③④进行判断,最后综合各个选项得出答案.【详解】解:图1反应的是日销售量y与时间t之间的关系图象,过(24,200),因此①是正确的,
由图2可得:z=,当t=10时,z=15,因此②也是正确的,当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=kt+b,
把(0,100),(24,200)代入得:,
解得:,
∴y=t+100(0≤t≤24),
当t=12时,y=150,z=-12+25=13,
∴第12天的日销售利润为;150×13=1950(元),第30天的销售利润为:150×5=750元,
因此③不正确,④正确,
故答案为:①②④.本题考查一次函数的应用,分段函数的意义和应用以及待定系数法求函数的关系式等知识,正确的识图,分段求出相应的函数关系式是解决问题的关键.10、中位数【解析】
参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩与全部成绩的中位数的大小即可.【详解】解:由于总共有12个人,且他们的分数互不相同,要判断是否进入前6名,只要把自己的成绩与中位数进行大小比较.故应知道中位数的多少即可,故答案为:中位数.本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.11、-2【解析】
将点A代入反比例函数解出k值,再将B的坐标代入已知反比例函数解析式,即可求得m的值.【详解】解:∵反比例函数y=,它的图象经过A(-2,1),∴1=,∴k=-2∴y=,将B点坐标代入反比例函数得,m=,∴m=-2,故答案为-2.本题考查了反比例函数图象上点的坐标特征:反比例函数(k是常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12、(1)、n+1-【解析】试题分析:(1)根据所给等式确定出一般规律,写出即可;(2)先将各式分母有理化,此时发现除第二项和倒数第二项外,其他各项的和为0,故可求出答案.解:(1)﹣(2)原式=[(﹣1)+(﹣)+(﹣)+…+(﹣)](+1)=(﹣1)(+1)=()2﹣12=2016﹣1=1.点睛:本题主要考查了代数式的探索与规律,二次根式的混合运算,根据所给的等式找到规律是解题的关键.13、51.【解析】
由图象可求出当0≤x≤2时,y与x的函数关系式为y=5x,当x>2时,y与x的函数关系式为y=4x+2,然后根据所求解析式分别求出当x=1和x=4时y的值即可.【详解】解:当0≤x≤2时,设y与x的函数关系式为y=kx,2k=10,得k=5,∴当0≤x≤2时,y与x的函数关系式为y=5x,当x=1时,y=5×1=5,当x>2时,设y与x的函数关系式为y=ax+b,,得,即当x>2时,y与x的函数关系式为y=4x+2,当x=4时,y=4×4+2=1,故答案为:5,1.一次函数在实际生活中的应用是本题的考点,根据图象求出函数解析式是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)90°;(2)60°;(3)互补,理由见解析;相等或互补;(4).【解析】
(1)通过作辅助线如图1,延长DC交AB于F,交BO于E,可以通过旋转性质得到AB=CD,OA=OC,BO=DO,证明△AOB≌△COD,进而求得∠B=∠D得∠BFE=∠EOD=90°(2)通过作辅助线如图2,延长DC交AB于F,交BO于E,同(1)得∠BFE=∠EOD=60°(3)通过作辅助线如图3,直线与直线所夹的锐角与旋转角互补,延长,交于点通过证明得,再通过平角的定义和四边形内角和定理,证得;形成结论:通过问题(1)(2)(3)可以总结出旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角相等或互补;(4)通过作辅助线如图:将绕点顺时针旋转,使得与重合,得到,连接,延长,交于点,可得,进一步得到△BDF是等边三角形,,再利用勾股定理求得.【详解】(1)解:(1)如图1,延长DC交AB于F,交BO于E,
∵α=90°
∴∠BOD=90°
∵线段AB绕点O顺时针旋转得线段CD,
∴AB=CD,OA=OC,BO=DO
∴△AOB≌△COD(SSS)
∴∠B=∠D
∵∠B=∠D,∠OED=∠BEF
∴∠BFE=∠EOD=90°
故答案为:90°
(2)如图2,延长DC交AB于F,交BO于E,
∵α=60°
∴∠BOD=60°
∵线段AB绕点O顺时针旋转得线段CD,
∴AB=CD,OA=OC,BO=DO
∴△AOB≌△COD(SSS)
∴∠B=∠D
∵∠B=∠D,∠OED=∠BEF
∴∠BFE=∠EOD=60°
故答案为:60°(3)直线与直线所夹的锐角与旋转角互补,延长,交于点∵线段绕点顺时针旋转得线段,∴,,∴∴∴∵∴∴∴直线与直线所夹的锐角与旋转角互补;形成结论:旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角相等或互补;(4)将绕点顺时针旋转,使得与重合,得到,连接,延长,交于点,∴旋转角为,∴,,,∴△BDF是等边三角形,∵,,∴,∴.本题是三角形综合题,考查了旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,添加辅助线构造全等三角形是本题的关键.15、(1);(2)S=();(3)PQ不能平分△ABC的周长,理由见解析.【解析】
(1)由题意得,PB=6-t,BQ=2t,根据PQ∥AC,得到,代入相应的代数式计算求出t的值;(2)由题意得,PB=6-t,BQ=2t,根据三角形面积的计算公式,S△PBQ=BP×BQ,列出表达式即可;(3)由题意根据勾股定理求得AC=10cm,利用PB+BQ是△ABC周长的一半建立方程解答即可.【详解】解:(1)由题意得,BP=6-t,BQ=2t,
∵PQ∥AC,
∴,即,
解得t=,
∴当t=时,PQ∥AC;(2)由题意得,PB=6-t,BQ=2t,∵∠B=90°,∴BP×BQ=×2t×(6-t)=,即ts秒时,S=();(3)PQ不能平分△ABC的周长.理由:∵在△ABC中,∠B=90°,AB=6cm,BC=8cm,
∴AC==10cm,设ts后直线PQ将△ABC周长分成相等的两部分,则AP=tcm,BQ=2tcm,BP=(6-t)cm,由题意得
2t+6-t=×(6+8+10)
解得:t=6>4,
所以不存在直线PQ将△ABC周长分成相等的两部分,即PQ不能平分△ABC的周长.本题考查勾股定理的应用、相似三角形的性质和三角形的面积,灵活运用相似三角形的性质,结合图形求解是解题的关键.16、(1)证明见详解;(2)4【解析】
(1)首先判定该四边形为平行四边形,然后得到∠D=90°,从而判定矩形;
(2)求得BE的长,在直角三角形ABE中利用勾股定理求得AE的长即可.【详解】解:(1)证明:∵AD∥BC,EC=AD,
∴四边形AECD是平行四边形.
又∵∠D=90°,
∴四边形AECD是矩形.(2)∵AC平分∠DAB.
∴∠BAC=∠DAC.
∵AD∥BC,
∴∠DAC=∠ACB.
∴∠BAC=∠ACB.
∴BA=BC=1.
∵EC=2,
∴BE=2.
∴在Rt△ABE中,AE=AB本题考查了矩形的判定及勾股定理的知识,解题的关键是利用矩形的判定定理判定四边形是矩形,难度不大.17、(1)见解析;(2)36m².【解析】
(1)先根据勾股定理求出BD的长度,然后根据勾股定理的逆定理,即可证明BD⊥BC;(2)根据两个直角三角形的面积即可求解.【详解】解:(1)在Rt△ABD中,∠BAD=90°,AB=4m,AD=3m,由勾股定理得:BD=5m,∵BC=12m,CD=13m,BD=5m.∴BD2+BC2=DC2,∴∠DBC=90°,即BD⊥BC;(2)四边形ABCD的面积是S△ABD+S△BDC=.本题考查了勾股定理,勾股定理的逆定理,牢牢掌握这些定理是解答本题的要点.18、(1)答案见解析;(2)答案见解析;(3)存在,BQ=b【解析】
(1)画出互相垂直的两直径即可;(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,则直线EF、OM将正方形的面积四等分,根据三角形的面积公式和正方形的性质求出即可;(3)当BQ=CD=b时,PQ将四边形ABCD的面积二等份,连接BP并延长交CD的延长线于点E,证△ABP≌△DEP求出BP=EP,连接CP,求出S△BPC=S△EPC,作PF⊥CD,PG⊥BC,由BC=AB+CD=DE+CD=CE,求出S△BPC-S△CQP+S△ABP=S△CPE-S△DEP+S△CQP,即可得出S四边形ABQP=S四边形CDPQ即可.【详解】解:(1)如图1所示,(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,则直线EF、OM将正方形的面积四等分,理由是:∵点O是正方形ABCD的对称中心,∴AP=CQ,EB=DF,在△AOP和△EOB中∵∠AOP=90°-∠AOE,∠BOE=90°-∠AOE,∴∠AOP=∠BOE,∵OA=OB,∠OAP=∠EBO=45°,∴△AOP≌△EOB,∴AP=BE=DF=CQ,设O到正方形ABCD一边的距离是d,则(AP+AE)d=(BE+BQ)d=(CQ+CF)d=(PD+DF)d,∴S四边形AEOP=S四边形BEOQ=S四边形CQOF=S四边形DPOF,直线EF、OM将正方形ABCD面积四等份;(3)存在,当BQ=CD=b时,PQ将四边形ABCD的面积二等份,理由是:如图③,连接BP并延长交CD的延长线于点E,∵AB∥CD,∴∠A=∠EDP,∵在△ABP和△DEP中∴△ABP≌△DEP(ASA),∴BP=EP,连接CP,∵△BPC的边BP和△EPC的边EP上的高相等,又∵BP=EP,∴S△BPC=S△EPC,作PF⊥CD,PG⊥BC,则BC=AB+CD=DE+CD=CE,由三角形面积公式得:PF=PG,在CB上截取CQ=DE=AB=a,则S△CQP=S△DEP=S△ABP∴S△BPC-S△CQP+S△ABP=S△CPE-S△DEP+S△CQP即:S四边形ABQP=S四边形CDPQ,∵BC=AB+CD=a+b,∴BQ=b,∴当BQ=b时,直线PQ将四边形ABCD的面积分成相等的两部分.本题考查了正方形性质,菱形性质,三角形的面积等知识点的应用,主要考查学生综合运用性质进行推理的能力,注意:等底等高的三角形的面积相等.一、填空题(本大题共5个小题,每小题4分,共20分)19、0【解析】
根据一元二次方程的解即可计算求解.【详解】把x=-2代入方程得,解得k=1或0,∵k2-1≠0,k≠±1,∴k=0此题主要考查一元二次方程的解,解题的关键是熟知一元二次方程二次项系数不为0.20、F(4,0)【解析】
(1)令y=0求出x的值,结合e=2可得出点A的坐标,由点B的坐标及e=2可求出AF的长度,将其代入OF=OB+AB+AF中即可求出点F的坐标;
(2)设点P的坐标为(x,),则点H的坐标为(1,),由Q为线段PF上靠近点P的三等分点,可得出点Q的坐标为(x+,),利用两点间的距离公式列方程解答即可;【详解】解:(1)如图:当y=0时,±,
解得:x1=2,x2=-2(舍去),
∴点A的坐标为(2,0).
∵点B的坐标为(1,0),
∴AB=1.
∵e=2,
∴,
∴AF=2,
∴OF=OB+AB+AF=4,
∴F点的坐标为(4,0).
故答案为:(4,0).(2)设点P的坐标为(x,),则点H的坐标为(1,).
∵点Q为线段PF上靠近点P的三等分点,点F的坐标为(5,0),
∴点Q的坐标为(x+,).
∵点H的坐标为(1,),HQ=HP,
∴(x+-1)2+(-)2=[(x-1)]2,
化简得:15x2-48x+39=0,
解得:x1=,x2=1(舍去),
∴点P的坐标为(,).故答案为:(,).本题考查了两点间的距离、解一元二次方程以及反比例函数的综合应用,解题的关键是:(1)利用特殊值法(点A和点P重合),求出点F的坐标;(2)设出点P的坐标,利用两点间的距离公式找出关于x的一元二次方程;21、>【解析】
观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;波动越小越稳定.【详解】解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;则乙地的日平均气温的方差小,故S2甲>S2乙.故答案为:>.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.22、2.40,2.1.【解析】∵把7天的成绩从小到大排列为:2.12,2.21,2.39,2.40,2.1,2.1,2.1.∴它们的中位数为2.40,众数为2.1.故答案为2.40,2.1.点睛:本题考查了中位数和众数的求法,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.一组数据中出现次数最多的数是这组数据的众数.23、1【解析】
如图,作PH⊥OB于H.由角平分线的性质定理推出PH=PD=3cm,再证明∠PCH=30°即可解决问题.【详解】解:如图,作PH⊥OB于H.∵∠POA=∠POB,PH⊥OB,PD⊥OA,∴PH=PD=3cm,∵PC∥OA,∴∠POA=∠CPO=15°,∴∠PCH=∠COP+∠CPO=30°,∵∠PHC=90°,∴PC=2PH=1cm.故答案为1.本题考查角平分线的性质,平行线的性质,等腰三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(2)33.【解析】
(1)根据平行四边形的性质得到AB∥CD,得到∠EAF=∠DFA,根据角平分线的定义得到∠DAF=∠EAF,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版空压机销售与能源管理培训服务合同3篇
- 二零二五年度家具行业展览展示合同范本
- 2025版LED智能广告租赁与信息发布合同3篇
- 二零二五年度建筑材料委托采购与环保审查服务合同3篇
- 二零二五年度二手房买卖合同中房产增值收益分配协议范本3篇
- 二零二五年度林业知识产权保护简易树木买卖合同范本3篇
- 二零二五年度旅游节庆项目合同3篇
- 二零二五年度新型建筑起重机械租赁及维护服务合同3篇
- 二零二五年度新型房产交易反担保与担保合同3篇
- 2025年度白酒原浆销售与市场开发合同3篇
- 山西省吕梁市2023-2024学年高二上学期期末数学试题
- 如何训练宝宝独立就寝
- 血常规报告单
- 设备部年度工作总结和来年计划
- 药品的收货与验收培训课件
- 宝宝大便观察及护理课件
- 公司月度安全生产综合检查表
- 开题报告会记录单
- 对话的力量:焦点解决取向在青少年辅导中的应用
- 我的家乡湖北荆门介绍
- (银川市直部门之间交流)2022事业单位工作人员调动表
评论
0/150
提交评论