![贵州铜仁松桃县2024-2025学年九年级数学第一学期开学调研试题【含答案】_第1页](http://file4.renrendoc.com/view8/M02/19/25/wKhkGWcaqYiAFqiOAAGcD_XMixE177.jpg)
![贵州铜仁松桃县2024-2025学年九年级数学第一学期开学调研试题【含答案】_第2页](http://file4.renrendoc.com/view8/M02/19/25/wKhkGWcaqYiAFqiOAAGcD_XMixE1772.jpg)
![贵州铜仁松桃县2024-2025学年九年级数学第一学期开学调研试题【含答案】_第3页](http://file4.renrendoc.com/view8/M02/19/25/wKhkGWcaqYiAFqiOAAGcD_XMixE1773.jpg)
![贵州铜仁松桃县2024-2025学年九年级数学第一学期开学调研试题【含答案】_第4页](http://file4.renrendoc.com/view8/M02/19/25/wKhkGWcaqYiAFqiOAAGcD_XMixE1774.jpg)
![贵州铜仁松桃县2024-2025学年九年级数学第一学期开学调研试题【含答案】_第5页](http://file4.renrendoc.com/view8/M02/19/25/wKhkGWcaqYiAFqiOAAGcD_XMixE1775.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页贵州铜仁松桃县2024-2025学年九年级数学第一学期开学调研试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)百货商场试销一批新款衬衫,一周内销售情况如表所示,商场经理想要了解哪种型号最畅销,那么他最关注的统计量是(
)
型号(厘米)383940414243数量(件)23313548298A.平均数 B.中位数 C.众数 D.方差2、(4分)如图,四边形ABCD是菱形,DH⊥AB于点H,若AC=8cm,BD=6cm,则DH=()A.5cm B.cm C.cm D.cm3、(4分)如图所示,正方形ABCD中,E,F是对角线AC上两点,连接BE,BF,DE,DF,则添加下列哪一个条件可以判定四边形BEDF是菱形()A.∠1=∠2 B.BE=DF C.∠EDF=60° D.AB=AF4、(4分)若,则函数的图象可能是A. B. C. D.5、(4分)菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直6、(4分)将点向左平移4个单位长度得点,则点的坐标是()A. B. C. D.7、(4分)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AC=12km,BC=16km,则M,C两点之间的距离为()A.13km B.12km C.11km D.10km8、(4分)函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图①,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B.图②是点F运动时,△FBC的面积y(cm)随时间x(s)变化的关系图象,则a的值是__10、(4分)若菱形的周长为14cm,一个内角为60°,则菱形的面积为_____cm1.11、(4分)在直角三角形ABC中,∠B=90°,BD是AC边上的中线,∠A=30°,AB=5,则△ADB的周长为___________12、(4分)某水池容积为300m3,原有水100m3,现以xm3/min的速度匀速向水池中注水,注满水需要ymin,则y关于x的函数表达式为________.13、(4分)若,则的值为__________,的值为________.三、解答题(本大题共5个小题,共48分)14、(12分)先化简分式,后在,0,1,2中选择一个合适的值代入求值.15、(8分)如图,在Rt△ABC中,∠C=90°,∠B=54°,AD是△ABC的角平分线.求作AB的垂直平分线MN交AD于点E,连接BE;并证明DE=DB.(要求:尺规作图,保留作图痕迹,不写作法)16、(8分)小明九年级上学期的数学成绩如下表:测试类别平时期中期末测试1测试2测试4课题学习112110成绩(分)106102115109(1)计算小明这学期的数学平时平均成绩?(2)如果学期总评成绩是根据如图所示的权重计算,求小明这学期的数学总评成绩?17、(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交点为
A(-3,0),与y轴交点为B,且与正比例函数y=43x的图象的交于点
C(m(1)求m的值及一次函数
y=kx+b的表达式;(2)若点P是y轴上一点,且△BPC的面积为6,请直接写出点P的坐标.18、(10分)如图,在矩形中,.(1)请用尺规作图法,在矩形中作出以为对角线的菱形,且点分别在上.(不要求写作法,保留作图痕迹)(2)在(1)的条件下,求菱形的边长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,把放在平面直角坐标系中,,,点A、B的坐标分别为、,将沿x轴向右平移,当点C落在直线上时,线段BC扫过的面积为______.20、(4分)计算:=________.21、(4分)在正方形ABCD中,对角线AC、BD相交于点O.如果AC=,那么正方形ABCD的面积是__________.22、(4分)如图,在平面直角坐标系xOy中,有两点A(2,4),B(4,0),以原点O为位似中心,把△OAB缩小得到△OA'B'.若B'的坐标为(2,0),则点A'的坐标为_____.23、(4分)如果一组数据3,4,,6,7的平均数为5,则这组数据的中位数和方差分别是__和__.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在平面直角坐标系中,直线y=-x+8分别交两轴于点A,B,点C的横坐标为4,点D在线段OA上,且AD=7.(1)求点D的坐标;(2)求直线CD的解析式;(3)在平面内是否存在这样的点F,使以A,C,D,F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,不必说明理由.25、(10分)小聪和小明沿同一条路同时从学校出发到某超市购物,学校与超市的路程是4千米.小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达超市.图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在超市购物的时间为分钟,小聪返回学校的速度为千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?26、(12分)如图1,平面直角坐标系中,直线AB:y=﹣x+b交x轴于点A(8,0),交y轴正半轴于点B.(1)求点B的坐标;(2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为线段AB上一点,过点P作y轴的平行线交直线AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;(3)在(2)的条件下,M为CA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使△QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标及PN的长度;若不存在,请说明理由.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】分析:商场经理要了解哪些型号最畅销,即所卖出的量最大,一组数据中出现次数最多的数字是众数,所以商场经理注的统计量为众数.详解:因为商场经理要了解哪种型号最畅销,即哪种型号卖出最多,也即哪个型号出现的次数最多,这个用众数表示.故选C.点睛:本题主要考查数据集中趋势中的平均数、众数、中位数在实际问题中的正确应用,理解平均数、众数、中位数的意义是解题关键.2、C【解析】
根据菱形性质在Rt△ABO中利用勾股定理求出AB=5,再根据菱形的面积可得AB×DH=×6×8=1,即可求DH长.【详解】由已知可得菱形的面积为×6×8=1.∵四边形ABCD是菱形,∴∠AOB=90°,AO=4cm,BO=3cm.∴AB=5cm.所以AB×DH=1,即5DH=1,解得DH=cm.故选:C.主要考查了菱形的性质,解决菱形的面积问题一般运用“对角线乘积的一半”和“底×高”这两个公式.3、B【解析】
由正方形的性质,可判定△CDF≌△CBF,则BF=FD=BE=ED,故四边形BEDF是菱形.【详解】由正方形的性质知,∠ACD=∠ACB=45°,BC=CD,CF=CF,
∴△CDF≌△CBF,
∴BF=FD,
同理,BE=ED,
∴当BE=DF,有BF=FD=BE=ED,四边形BEDF是菱形.
故选B.考查了菱形的判定,解题关键是灵活运用全等三角形的判定和性质,及菱形的判定.4、A【解析】
根据kb>0,可知k>0,b>0或k<0,b<0,然后分情况讨论直线的位置关系.【详解】由题意可知:可知k>0,b>0或k<0,b<0,
当k>0,b>0时,
直线经过一、二、三象限,
当k<0,b<0
直线经过二、三、四象限,
故选(A)本题考查一次函数的图像,解题的关键是清楚kb大小和图像的关系.5、D【解析】试题分析:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.考点:菱形的性质;平行四边形的性质.6、B【解析】
将点A的横坐标减4,纵坐标不变,即可得出点A′的坐标.【详解】解:将点A(3,3)向左平移4个单位长度得点A′,则点A′的坐标是(3-4,3),即(-1,3),
故选:B.此题考查坐标与图形变化-平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.7、D【解析】
由勾股定理可得AB=20,斜边中线等于斜边的一半,所以MC=1.【详解】在Rt△ABC中,AB2=AC2+CB2,∴AB=20,∵M点是AB中点,∴MC=AB=1,故选D.本题考查了勾股定理和斜边中线的性质,综合了直角三角形的线段求法,是一道很好的问题.8、B【解析】试题分析:先把与组成方程组求得交点坐标,即可作出判断.由解得所以函数的图象与函数的图象的交点在第二象限故选B.考点:点的坐标点评:平面直角坐标系内各个象限内的点的坐标的符号特征:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
过点D作DE⊥BC于点E,通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE;再由图象可知,BD=,在Rt△DBE中应用勾股定理求BE的值,进而在Rt△DEC应用勾股定理求a的值.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm.∴AD=a,∴DE·AD=a,∴DE=2.当点F从D到B时,用s,∴BD=.Rt△DBE中,BE=.∵ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a=2+(a-1),解得a=.此题考查菱形的性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系;10、18【解析】
根据已知可求得菱形的边长,再根据直角三角形的性质求得菱形的高,从而根据菱形的面积公式计算得到其面积【详解】解:菱形的周长为14cm,则边长为6cm,可求得60°所对的高为×6=3cm,则菱形的面积为6×3=18cm1.故答案为18.此题主要考查菱形的面积公式:边长乘以高,综合利用菱形的性质和勾股定理11、【解析】
先作出Rt△ABC,根据∠A=30°,AB=5,可求得BC、AC的长度,然后根据直角三角形斜边中线等于斜边的一半求出中线BD的长度,继而可求得△ADB的周长.【详解】解:如图所示,∵∠ABC=90°,∠A=30°,AB=5,∴设BC=x,则AC=2x∵∴∴x=5∴BC=5,AC=10在直角三角形ABC中,∠ABC==90°,BD是AC边上的中线∴∴△ADB的周长为:故答案为:本题考查了勾股定理、含30°角的直角三角形和直角三角形斜边的中线等知识,解答本题的关键是根据勾股定理求出直角边的长度.12、y=【解析】
先根据条件算出注满容器还需注水200m3,根据注水时间=容积÷注水速度,据此列出函数式即可.【详解】解:容积300m3,原有水100m3,还需注水200m3,由题意得:y=.本题考查了反比例函数的实际应用,理清实际问题中的等量关系是解题的关键.13、,【解析】
令,用含k的式子分别表示出,代入求值即可.【详解】解:令,则,所以,.故答案为:(1).,(2).本题考查了分式的比值问题,将用含同一字母的式子表示是解题的关键.三、解答题(本大题共5个小题,共48分)14、,.【解析】
先对进行化简,再选择-1,0,1代入计算即可.【详解】原式因为且所以当时,原式当时,原式考查了整式的化简求值,解题关键是熟记分式的运算法则.15、见解析.【解析】
如图,利用基本作图作MN垂直平分AB得到点E,先计算出∠BAC=36°,再利用AD是△ABC的角平分线得到∠DAB=18°,再利用线段垂直平分线的性质和等腰三角形的性质得到∠EBA=∠EAB=18°,接着利用三角形外角性质得到∠DEB=36,然后计算出∠DBE=36°得到∠DEB=∠DBE,从而得到DE=DB【详解】如图,点E为所作;∵∠C=90°,∠B=54°,∴∠BAC=36°,∵AD是△ABC的角平分线,∴∠DAB=×36°=18°,∵MN垂直平分AB,∴EA=EB,∴∠EBA=∠EAB=18°,∴∠DEB=∠EAB+∠EBA=36°,∵∠DBE=54°﹣18°=36°,∴∠DEB=∠DBE,∴DE=DB.此题考查线段垂直平分线的性质和作图一基本作图,解题关键在于利用垂直平分线的性质解答16、(1)108(2)110.4【解析】
(1)根据平均数的计算公式计算即可.(2)根据权重乘以每个时期的成绩总和为总评成绩计算即可.【详解】(1)根据平均数的计算公式可得:因此小明这学期的数学平时平均成绩为108(2)根据题意可得:因此小明这学期的数学总评成绩110.4本题主要考查数据统计方面的知识,关键要熟悉概念和公式,应当熟练掌握.17、(1)m的值为3,一次函数的表达式为y=(2)点P的坐标为(0,6)、(0,-2)【解析】(1)首先利用待定系数法把C(m,4)代入正比例函数y=43(2)利用△BPC的面积为6,即可得出点P的坐标.解:(1)∵点C(m,4)在正比例函数y=4∴4=43·m,m=3即点C坐标为(3∵一次函数y=kx+b经过A(-3,0)、点C(3,4)∴{0=-3k+b4=3k+b∴一次函数的表达式为y=(2)点P的坐标为(0,6)、(0,-2)“点睛”此题主要考查了待定系数法求一次函数解析式知识,根据待定系数法把A、C两点坐标代入函数y=kx+b中,计算出k、b的值是解题关键.18、(1)见解析;(2)菱形的边长为.【解析】
(1)连接BD,作BD的垂直平分线交AD、BC与E、F,点E、F即为所求的点;(2)设ED=x,则BE=x,AE=5-x,在Rt△ABE中利用勾股定理可以算出x的值即可.【详解】(1)连接BD,作BD的垂直平分线交AD、BC与E、F,连接BE,DF即可,如图,菱形即为所求.(2)设的长为,∵,∴,∴在中,,即,解得,即菱形的边长为.此题主要考查了菱形的判定与性质,以及勾股定理的应用,关键是正确画出图形,熟练掌握菱形的判定方法.一、填空题(本大题共5个小题,每小题4分,共20分)19、14【解析】
先求AC的长,即求C的坐标,由平移性质得,平移的距离,因此可求线段BC扫过的面积.【详解】点A、B的坐标分别为、,,在中,,,,,由于沿x轴平移,点纵坐标不变,且点C落在直线上时,,,平移的距离为,扫过面积,故答案为:14本题考查了一次函数图象上点的坐标特征,平移的性质,关键是找到平移的距离.20、1【解析】试题解析:原式=()1-11=6-4=1.21、1【解析】
根据正方形的对角线将正方形分为两个全等的等腰直角三角形,AC是该三角形的斜边,由此根据三角形面积的计算公式得到正方形的面积.【详解】正方形ABCD的一条对角线将正方形分为两个全等的等腰直角三角形,即AC是等腰直角三角形的斜边,∵AC=∴正方形ABCD的面积两个直角三角形的面积和,∴正方形ABCD的面积=,故答案为:1.此题考查正方形的性质,等腰直角三角形的性质,正确掌握正方形的性质是解题的关键.22、(1,2)【解析】
根据位似变换的性质,坐标与图形性质计算.【详解】点B的坐标为(4,0),以原点O为位似中心,把△OAB缩小得到△OA'B',B'的坐标为(2,0),
∴以原点O为位似中心,把△OAB缩小12,得到△OA'B',
∵点A的坐标为(2,4),
∴点A'的坐标为(2×12,4×12),即(1,2),
故答案是:(1考查的是位似变换,坐标与图形性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.23、5;1.【解析】
首先根据其平均数为5求得的值,然后再根据中位数及方差的计算方法计算即可.【详解】解:数据3,4,,6,7的平均数是5,解得:,中位数为5,方差为.故答案为:5;1.本题考查了平均数、中位数及方差的定义与求法,熟练掌握各自的求法是解题关键.二、解答题(本大题共3个小题,共30分)24、(1)点D(1,0);(2)y=43x-43;(3)点F的坐标是(11,4)【解析】
(1)首先根据直线y=-x+8分别交两轴于点A、B,可得点A的坐标是(8,0),点B的坐标是(0,8),然后根据点D在线段OA上,且AD=7,即可求出点D的坐标;(2)利用待定系数法可求直线CD的解析式;(3)设点F(x,y),分情况讨论,由平行四边形的性质和中点坐标公式,可求出点F的坐标.【详解】解:(1)∵直线y=-x+8分别交两轴于点A,B,∴当x=0时,y=8,当y=0时,x=8∴点A(8,0),点B(0,8)∵点D在线段OA上,且AD=7.∴点D(1,0)(2)∵点C的横坐标为4,且在直线y=-x+8上,∴y=-4+8=4,∴点C(4,4)设直线CD的解析式y=kx+b∴4=4k+b0=k+b,解得:∴直线CD解析式为:y=43(3)设点F(x,y)①若以CD,AD为边,∵四边形ADCF是平行四边形,∴AC,DF互相平分,∵点A(8,0),点D(1,0),点C(4,4),点F(x,y)∴4+82=1+x∴点F(11,4)②若以AC,AD为边∵四边形ADFC是平行四边形,∴AF,CD互相平分,∵点A(8,0),点D(1,0),点C(4,4),点F(x,y)∴8+x2=4+1∴点F(-3,4)③若以CD,AC为边,∵四边形CDFA是平行四边形,∴AD,CF互相平分,∵点A(8,0),点D(1,0),点C(4,4),点F(x,y)∴1+82=4+x∴点F(5,-4)综上所述:点F的坐标是(11,4),(5,-4),(-3,4).此题考查平行四边形的性质,中点坐标公式,求一次函数的解析式,解题关键在于分情况讨论.25、(1)15,;(2)s=t;(2)2千米【解析】
(1)根据购物时间=离开时间﹣到达时间即可求出小聪在超市购物的时间;再根据速度=路程÷时间即可算出小聪返回学校的速度;(2)根据点的坐标利用待定系数法即可求出小明离开学校的路程s与所经过的时间t之间的函数关系式;(2)根据点的坐标利用待定系数法即可求出当20≤s≤45时小聪离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式,令两函数关系式相等即可得出关于t的一元一次方程,解之即可求出t值,再将其代入任意一函数解析式求出s值即可.【详解】解:(1)20﹣15=15(分钟);4÷(45﹣20)=(千米/分钟).故答案为:15;.(2)设小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式为s=mt+n,将(0,0)、(45,4)代入s=mt+n中,,解得:,∴s=t.∴小明离开学校的路程s与所经过的时间t之间的函数关系式为s=t.(2)当20≤s≤45时,设小聪离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式为s=kt+b,将(20,4)、(45,0)代入s=kt+b,,解得:,∴s=﹣t+1.令s=t=﹣t+1,解得:t=,∴s=t=×=2.答:当小聪与小明迎面相遇时,他们离学校的路程是2千米.本题考查了一次函数的应用以及待定系数法求一次函数解析式,解题的关键是:(1)根据数量关系列式计算;(2)根据点的坐标利用待定系数法求出函数关系式;(2)根据点的坐标利用待定系数法求出函数关系式.26、(1)B(0,6);(2)d=﹣t+10;(3)见解析.【解析】【分析】(1)把A(8,0)代入y=﹣x+b,可求解析式,再求B的坐标;(2)先求点C(0,﹣4),再求直线AC解析式,可设点P(t,﹣t+6),Q(t,t﹣4),所以d=(﹣t+6)﹣(t﹣4);过点M作MG⊥PQ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年鹤壁c1货运从业资格证考试内容
- 2024-2025学年九年级历史下册第一单元殖民地人民的反抗与资本主义制度的扩展第3课美国内战同步练习1新人教版
- 苏科版数学七年级下册8.3《同底数幂的除法》听评课记录1
- 2024-2025学年高中物理第四章牛顿运动定律第1节牛顿第一定律同步训练含解析新人教版必修1
- 2024-2025学年高中数学第一章集合与常用逻辑用语1.2集合间的基本关系课后篇巩固提升含解析新人教A版必修1
- 2024-2025学年高中政治课时分层作业5依法行使财产权含解析新人教版选修5
- 四年级上册数学计算题100道 100道(含答案)
- 餐饮服务员工作计划
- 商业房屋出租合同范本
- 公司并购财务顾问协议书范本
- 电梯使用转让协议书范文
- 工程变更履历表
- swagelok管接头安装培训教程
- 煤矿岗位标准化作业流程
- 唯物史观课件
- 公墓管理考核方案
- 把子肉店创业计划书
- 综合楼装修改造项目 投标方案(技术方案)
- 冀教版五年级上册英语全册单元测试卷(含期中期末试卷及听力音频)
- 静脉用药安全输注药护专家指引
- 华住酒店管理制度
评论
0/150
提交评论