版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题21.11确定二次函数解析式的方法【八大题型】【沪科版】TOC\o"13"\h\u【题型1已知一点、两点或三点坐标确定二次函数解析式】 1【题型2利用顶点式确定二次函数解析式】 4【题型3利用交点式确定二次函数解析式】 8【题型4利用平移确定二次函数解析式】 11【题型5利用对称变换或旋转变换确定二次函数解析式】 14【题型6根据图象信息确定二次函数解析式】 16【题型7根据几何图形的性质确定二次函数解析式】 21【题型8根据数量关系确定二次函数解析式】 29【题型1已知一点、两点或三点坐标确定二次函数解析式】【例1】(2023·陕西西安·西安市庆安初级中学校联考模拟预测)二次函数y=ax2+bx+x…--013…y……下列选项中,正确的是(
)A.这个函数的最大值为-B.这个函数图象的对称轴为直线xC.这个函数的图象与x轴有两个不同的交点D.若点P-32,【答案】D【分析】先求二次函数的解析式,再判断.【详解】由题意,得a-b+∴该二次函数的表达式y=-A.由函数解析式y=-x-B.函数的对称轴为直线x=-C.该函数图象与x轴只有2,0一个交点,故选项不符合题意;D.当x=-32时,y1=--32-22故选:D.【点睛】本题考查了二次函数的图像和性质,求出二次函数的解析式是求解本题的关键.【变式11】(2023春·浙江杭州·九年级统考期末)若二次函数y=axA.-2,-3 B.2,3 C.2,-3 D.【答案】C【分析】把-2,-3代入y=a【详解】解:把-2,-3代入y-解得:a所以二次函数解析式:y=-A.当x=-2时,y=-3B.当x=2时,y=-3C.当x=2时,y=-3D.当x=-2时,y=-3故选C.【点睛】本题考查二次函数解析式的求法,以及二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.【变式12】(2023·上海·九年级假期作业)已知抛物线y=ax2+bx+A.2 B.3 C.4 D.t【答案】A【分析】把点A(【详解】解:∵抛物线y=ax∴4a+2b∴a+故选:A.【点睛】本题主要考查二次函数与三元一次方程组的综合,掌握二次函数的代入法,解三元一次方程组的方法是解题的关键.【变式13】(2023春·广东广州·九年级校考期中)已知抛物线y=13x2+bx(1)求抛物线的函数表达式;(2)求抛物线的顶点B的坐标.【答案】(1)y(2)B【分析】(1)先求出函数的对称轴,得到-b2×13=2,从而得到b(2)把函数解析式化成顶点式,再得出顶点坐标即可.【详解】(1)解:∵抛物线y=13x2∴对称轴是直线x=-1+5解得:b=-∴y∵抛物线过点A4∴1解得:c=-1∴抛物线的解析式为:y=(2)解:y=∴顶点坐标B2【点睛】本题考查了用待定系数法求二次函数解析式,把二次函数解析式化成顶点式,根据题意求出b的值是解题的关键.【题型2利用顶点式确定二次函数解析式】【例2】(2023春·广东广州·九年级统考开学考试)如图,抛物线y=ax2+bx+c与x轴交于O、A两点,顶点坐标
(1)分别求出抛物线的解析式和直线l的解析式;(2)根据图象,直接写出ax【答案】(1)抛物线y=12(2)2<x【分析】(1)先根据点O,B的坐标,利用待定系数法可求出抛物线的解析式,再利用抛物线求得A点的坐标,利用待定系数法即可求得直线(2)找出二次函数的图象位于一次函数的图象的下方时,x的取值范围即可得.【详解】(1)解:∵抛物线y=ax∴y=∵y=ax∴0=a解得a=∴y=12令y=0,则0=解得x=0或x∴A4∵直线l:y=mx+∴0=4解得m=1∴直线l:(2)解:不等式ax2+bx+∵直线l:y=mx+∴由函数图象得:2<x即不等式ax2+【点睛】本题考查了二次函数与一次函数的综合,熟练掌握待定系数法和函数图象法是解题关键.【变式21】(2023春·广东广州·九年级广州市第十三中学校考期中)已知抛物线经过点1,-1,并且当x=3时,y有最大值为5【答案】y【分析】根据当x=3时,y取得最大值是5,可知顶点坐标为(3,5),设抛物线顶点式解析式y=a(x【详解】解:由题意,可得抛物线顶点坐标(3,5),∴设抛物线解析式为y=∵抛物线经过点1,-1,∴-1=a解得a=-所以,该抛物线解析式为y=【点睛】本题考查了待定系数法求二次函数解析式.在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.【变式22】(2023春·九年级课时练习)已知二次函数的图像关于直线y=3对称,最大值是0,在y轴上的截距是-1,这个二次函数解析式为.【答案】y=-19(x-3)【分析】根据已知可知:该二次函数顶点坐标是(3,0)、该函数经过点(0,1);所以设该函数解析式为y=a(x3)2(a为常数,且a≠0),将点(0,1)代入求解即可.【详解】解:∵二次函数的图象的对称轴是x=3,函数的最大值是0,∴该二次函数顶点坐标是(3,0),故设该二次函数的解析式为:y=a(x3)2(a为常数,且a≠0),∵该函数在y轴上的截距是1,∴该函数经过点(0,1),∴把x=0,y=1代入上式,得9a=1,即a=19∴这个二次函数解析式为y=19(x3)2故答案为y=19(x3)2【点睛】本题主要考查的是二次函数解析式的求法.在解答时,要认真挖掘隐含在题干中的已知条件,根据已知条件来解答.【变式23】(2023·青海海东·统考二模)抛物线与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为-3,0,点C的坐标为0,-3,对称轴为直线x(1)求该抛物线的表达式;(2)若点P在抛物线上,且S△POC=4(3)设点Q是线段AC上的动点,作QD∥y轴交抛物线于点D,求线段【答案】(1)y(2)P14,21(3)9【分析】(1)利用待定系数法求解即可;(2)根据抛物线的解析式得出OB=1,OC=3,从而求得三角形BOC的面积,设点P的坐标为m,m2+2m(3)利用待定系数法可求得直线AC的解析式为y=-x-3,设点【详解】(1)已知抛物线的对称轴为直线x=可设抛物线的表达式为y=将点A-3,0,点得4a解得a=1∴抛物线的表达式为y=(2)由(1)知抛物线表达式为y=令y=0,解得x=-3或∴点B的坐标为1,0,∵点C坐标为0,-3,∴OB=1,OC∴S△∵点P在抛物线上,∴设点P的坐标为m,∴S∵S△∴32解得m=4或m∴当m=4时,m当m=-4时,m∴满足条件的点P有两个,分别为P14,21,(3)如解图,设直线AC的解析式为y=
将点A-3,0,得-3解得b=-1∴直线AC的解析式为y=-由于点Q在AC上,可设点Qn则点Dn,n∴DQ=-n2∴当n=-32时,DQ【点睛】本题考查了待定系数法求解析式、二次函数的性质及最值,熟练掌握二次函数的性质是解题的关键.【题型3利用交点式确定二次函数解析式】【例3】(2023·上海·九年级假期作业)已知抛物线y=ax2+bx+c与x轴的公共点是-4,0,2,0,将该抛物线向右平移3A.5 B.-5 C.4 D.【答案】B【分析】先利用点平移的规律得到点-4,0,2,0向右平移3个单位长度后对应点的坐标为-1,0,5,0,利用交点式,设平移后的抛物线解析式为y=ax+1x-5,接着把把0,-5代入求得a=1,于是原抛物线的解析式可设为【详解】解:∵点-4,0,2,0向右平移3个单位长度后对应点的坐标为-1,0,∴设平移后的抛物线解析式为y=把0,-5代入得a×解得a=1∴原抛物线的解析式为y=即y=∴a=1,b=2∴a故选:B.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a【变式31】(2023春·九年级课时练习)如图,在平面直角坐标系xOy中,点A,B,C分别为坐标轴上的三个点,且OA=1,OB=3,OC=4,则经过A,B,C三点的抛物线的表达式为.【答案】y=-34(x+4)(x-【详解】由题意可知:点A、B、C的坐标分别为(1,0)、(0,3)、(4,0),∴可设抛物线表达式为:y=a(x-1)(x+4),代入点(∴抛物线的表达式为:y=-【变式32】(2023春·安徽合肥·九年级合肥市第四十五中学校考期中)二次函数图象经过(﹣1,0),(3,0),(1,﹣8)三点,求此函数的解析式.【答案】y=2x2﹣4x﹣6【分析】利用待定系数法求解即可.【详解】解:根据题意可设抛物线解析式为y=a(x+1)(x﹣3),将点(1,﹣8)代入,得:﹣4a=﹣8,解得:a=2,∴该二次函数解析式为y=2(x+1)(x﹣3),即y=2x2﹣4x﹣6.【点睛】本题考查了待定系数法求二次函数的的解析式,属于基本题型,熟练掌握求解的方法是关键.【变式33】(2023·山东菏泽·统考三模)在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点为A(-3,0),(1)求二次函数的解析式;(2)点P为第三象限内抛物线上一点,△APC的面积记为S,求S的最大值及此时点P【答案】(1)y(2)S的最大值是278,点P的坐标是【分析】(1)根据二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点为A(﹣3,0),B(1,0)两点,与y轴交于点C(0,﹣3),可以求得该函数的解析式;(2)根据题意可以得到直线AC的函数解析式,然后根据△APC的面积记为S,利用二次函数的性质可以得到S的最大值,以及此时点P的坐标【详解】(1)解:∵二次函数过A(-3,0),B∴设二次函数解析式为y=∵二次函数过C点(0,-3),∴-3=解得a=1,∴y即二次函数解析式为y=(2)解:设直线AC解析式为:y=kx+b,∵A(-3,0),C∴-3解得k=-1∴直线AC的解析式为y=﹣x-3,过点P作x轴的垂线交AC于点G,设点P的坐标为x,则G(∵点P在第三象限,∴PG=-∴S=∴当x=-32此时x2∴点P-即S的最大值是278,此时点P的坐标是-【点睛】本题考查待定系数法求二次函数解析式、二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.【题型4利用平移确定二次函数解析式】【例4】(2023·浙江·九年级假期作业)已知二次函数y=ax2-4ax+5aaA.-34 B.-12 C.【答案】D【分析】求出平移后的抛物线,进而求出顶点坐标,待入原解析式,进行求解即可.【详解】解:y=由题意,得,新的抛物线的解析式为:y=∴新抛物线的顶点坐标为4,a∵所得新抛物线的顶点恰好落在原抛物线图象上,∴a+3=16∴a=故选D.【点睛】本题考查二次函数图象的平移,待定系数法求二次函数解析式.熟练掌握抛物线的平移规则:左加右减,上加下减,是解题的关键.【变式41】(2023春·陕西榆林·九年级统考期末)已知抛物线:y=a(x-1)2【答案】y=(【分析】先利用待定系数法确定函数关系式,再根据平移规律“上加下减,左加右减”写出新抛物线解析式.【详解】解:将(3,0)代入y=a(解得a=1∴该抛物线的表达式为y=将抛物线y=(x-1)2-4向上平移【点睛】本题考查了二次函数图象上点的坐标特征和二次函数图象与几何变换,由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.【变式42】(2023春·山东济南·九年级统考开学考试)把抛物线y=ax2+bx+c先向右平移1个单位长度,再向上平移【答案】1【分析】先将抛物线y=ax2+bx+c化为顶点式,再根据“左加右减【详解】∵y=抛物线y=ax2+bx+∴ax∴a=1b2∴a故答案为:1.【点睛】本题主要考查了二次函数图像的平移,熟练掌握二次函数一般式化为顶点式,解方程组,平移规则,是解题关键.【变式43】(2023春·黑龙江大庆·九年级统考期末)如图,抛物线y1=-x2+2
(1)抛物线y2的顶点坐标__________(2)阴影部分的面积S=__________(3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,求抛物线【答案】(1)(1,2)(2)2(3)y【分析】(1)根据抛物线的移动规律左加右减可直接得出抛物线y2的解析式,再根据y(2)根据平移的性质知,阴影部分的面积等于底×高,列式计算即可;(3)先求出二次函数旋转后的开口方向和顶点坐标,从而得出抛物线y3【详解】(1)解:解:∵抛物线y1=-x2+2∴抛物线y2的解析式是y2=-故答案为:(1,2);(2)把阴影部分进行平移,可得到阴影部分的面积即为图中两个方格的面积=1×2=2;故答案为:2;(3)由题意可得:抛物线y3的顶点与抛物线y2的顶点关于原所以抛物线y3的顶点坐标为(-1,-2),于是可设抛物线y3的解析式为:由对称性或者抛物线开口大小不变方向改变得a=1所以y3【点睛】此题考查了二次函数的图像与几何变化,用到的知识点是二次函数的图像和性质、顶点坐标,关键是掌握二次函数的移动规律和几何变换.【题型5利用对称变换或旋转变换确定二次函数解析式】【例5】(2023·陕西西安·西安市铁一中学校考模拟预测)在同一平面直角坐标系中,若抛物线y=-ax2+3x-c与A.0 B.-4 C.4 D.【答案】C【分析】根据关于x轴对称,函数y是互为相反数即可解答.【详解】解:∵y=-ax2+3∴-y=2x∴a=2c=-∴a+2故选:C.【点睛】本题主要考查了二次函数图像与几何变换,根据关于x轴对称的坐标特征把抛物线y=-ax【变式51】(2023·陕西·九年级专题练习)将抛物线y=x2﹣2x﹣3沿x轴折叠得到的新抛物线的解析式为()A.y=﹣x2+2x+3 B.y=﹣x2﹣2x﹣3 C.y=x2+2x﹣3 D.y=x2﹣2x+3【答案】A【分析】利用原抛物线上的关于x轴对称的点的特点:横坐标相同,纵坐标互为相反数就可以解答.【详解】抛物线y=x2﹣2x﹣3关于x轴对称的抛物线的解析式为:﹣y=x2﹣2x﹣3,即y=﹣x2+2x+3,故选A.【点睛】本题考查了二次函数图象与几何变换,解决本题的关键是抓住关于x轴对称的坐标特点.【变式52】(2023春·山东威海·九年级校考期末)将抛物线y=2x2A.y=-2x2C.y=-2x2【答案】D【详解】y=2x212x+16=2(x26x+8)=2(x3)22,将原抛物线绕顶点旋转180°后,得:y=2(x3)22=2x2+12x20;故选D.【变式53】(2023春·陕西安康·九年级统考期末)在平面直角坐标系中,将抛物线C1:y=x2+2x+3绕着它与yA.抛物线C2的开口向下 B.抛物线C2C.抛物线C2的顶点坐标为1,4 D.抛物线C2与【答案】D【分析】先根据中心对称的性质求出旋转后抛物线C2解析式为y【详解】解:原抛物线C1解析式变形:y∴顶点坐标为-1,2,与y轴交点的坐标为0,3又由抛物线绕着它与y轴的交点旋转180°,∴新的抛物线开口向下,新抛物线的顶点坐标与原抛物线的顶点坐标关于点0,3中心对称,∴新的抛物线的顶点坐标为1,4,∴新的抛物线C2解析式为:y
∴抛物线C2的开口向下,故A抛物线C2的对称轴为直线x=1,故抛物线C2的顶点坐标为1,4,故C∵抛物线C2的顶点坐标为1,4∴抛物线C2与x轴有两个交点,故D故选:D.【点睛】本题考查抛物线的几何变换,抛物线的图象性质,根据中心对称的性质求出旋转后抛物线解析式是解题的关键.【题型6根据图象信息确定二次函数解析式】【例6】(2023春·福建龙岩·九年级校考阶段练习)二次函数的部分图象如图所示,对称轴是直线x=﹣1.(1)求这个二次函数的解析式;(2)求该图象的顶点坐标;(3)观察图象,当y>0时,求自变量x的取值范围.【答案】(1)y=-(2)该图象的顶点坐标为(﹣1,4);(3)﹣3<x<1【分析】(1)由对称轴为直线x=−1,可设抛物线解析式为y=(2)根据抛物线顶点式可直接得出答案;(3)根据抛物线的对称性求出抛物线与x轴的另一个交点坐标,然后结合函数图象求解即可.(1)解:设抛物线解析式为y=将(﹣3,0),(0,3)代入得:0=4a解得a=-1∴二次函数的解析式为:y=-(2)∵y=-∴该图象的顶点坐标为(﹣1,4);(3)∵抛物线经过点(﹣3,0),对称轴为直线x=﹣1,∴抛物线经过点(1,0),由函数图象得:当y>0时,自变量x的取值范围是﹣3<x<1.【点睛】本题考查待定系数法的应用,二次函数的顶点式,二次函数与不等式的关系等知识,熟练掌握数形结合思想的应用是解答本题的关键.【变式61】(2023春·广东河源·九年级校考开学考试)若二次函数y=ax2+bx+
A.-2 B.±2 C.-2【答案】D【分析】根据图象开口向下可知a>0,又二次函数图象经过坐标原点,把原点坐标代入函数解析式解关于a【详解】解:把原点0,0代入抛物线解析式,得a2解得a=±∵函数开口向上,a>0∴a=故选:D.【点睛】本题考查了二次函数图象上点的坐标特征,观察图象判断出a是负数且经过坐标原点是解题的关键.【变式62】(2023春·广东广州·九年级广州市第八十九中学校考期中)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点
(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.当AM⊥x轴时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P【答案】(1)y(2)4或5+412【分析】(1)利用一次函数解析式确定B5,0,C(2)先解方程-x2+6x-5=0得A1,0,再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=4,接着根据平行四边形的性质得到PQ=AM=4,PQ⊥x【详解】(1)解:∵直线y=x-5经过点∴当x=0时,y=0-5=-5,则当y=0时,x-5=0,解得x∵点B,C在抛物线y=∴25a解得a=-1∴抛物线解析式为y=-(2)∵抛物线y=-x2+6x-5∴y=0时,-解得:x1=1,∴A1,0∵B5,0,C0,-5,∴OB=∴△OCB∴∠OBC∵AM⊥∴△AMB∴AM=∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥∴PQ=AM=4设Pm,-m当P点在直线BC上方时,PQ=-解得:m1=1(舍去),当P点在直线BC下方时,PQ=解得:m3=5+综上所述,点P的横坐标为4或5+412或
【点睛】本题是二次函数的综合题,考查了用待定系数法确定函数解析式,二次函数图像上点的坐标特征、一次函数图像上点的坐标特征,等腰直角三角形的判定与性质和平行四边形的性质,运用了分类讨论的思想.运用分类讨论是解题的关键.【变式63】(2023春·全国·九年级专题练习)如图,在平面直角坐标系中,点A的坐标为(0,2),点B的坐标为(4,2).若抛物线y=-32(x-h)2+k(h、k为常数)与线段AB交于C、D【答案】y【分析】根据题意,可以得到点C的坐标和h的值,然后将点C的坐标代入抛物线的解析式,即可得到k的值,本题得以解决.【详解】解:∵点A的坐标为(0,2),点B的坐标为(4,2),∴AB=4,又A、B也关于抛物线对称轴对称,∴h=2,∵抛物线y=﹣32(x﹣h)2+k(h、k为常数)与线段AB交于C、D∴CD=12AB=2∴则点C的坐标为(1,2),(或点D的坐标为(3,2)),代入解析式,∴2=﹣32+k
解得,k=72∴所求抛物线解析式为y【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.【题型7根据几何图形的性质确定二次函数解析式】【例7】(2023·山东东营·统考中考真题)如图,抛物线过点O0,0,E10,0,矩形ABCD的边AB在线段OE上(点B在点A的左侧),点C,D在抛物线上,设Bt,0,当
(1)求抛物线的函数表达式;(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形ABCD【答案】(1)y(2)当t=1时,矩形ABCD的周长有最大值,最大值为(3)4【分析】(1)设抛物线的函数表达式为y=axx-10(2)由抛物线的对称性得AE=OB=t,则(3)连接AC,BD相交于点P,连接OC,取OC的中点Q,连接PQ,根据矩形的性质和平移的性质推出四边形OCHG是平行四边形,则PQ=CH,PQ=12OA.求出t=2【详解】(1)解:设抛物线的函数表达式为y=∵当t=2时,BC∴点C的坐标为2,-4.将点C坐标代入表达式,得2a解得a=∴抛物线的函数表达式为y=(2)解:由抛物线的对称性得:AE=∴AB=10-2当x=t时,∴矩形ABCD的周长为2=-=-1∵-1∴当t=1时,矩形ABCD的周长有最大值,最大值为41(3)解:连接AC,BD相交于点P,连接OC,取OC的中点Q,连接PQ.
∵直线GH平分矩形ABCD的面积,∴直线GH过点P..由平移的性质可知,四边形OCHG是平行四边形,∴PQ=∵四边形ABCD是矩形,∴P是AC的中点.∴PQ=当t=2时,点A的坐标为8,0∴CH=∴抛物线平移的距离是4.【点睛】本题主要考查了求二次函数的解析式,二次函数的图象和性质,矩形的性质,平移的性质,解题的关键是掌握用待定系数法求解二次函数表达式的方法和步骤,二次函数图象上点的坐标特征,矩形的性质,以及平移的性质.【变式71】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 令我印象深刻的一个人9篇
- 2025版高考物理二轮复习 教材情境2 基于教材中“例题和习题”的情境命题
- 广西河池市校联体2024-2025学年高二上学期联考(12月) 数学试题(含解析)
- 2024-2025学年内蒙古呼和浩特市回民区九年级(上)期中物理试卷(含答案)
- 相对密度仪校准规范-编写说明
- 2025届安徽省江淮十校高三上学期第二次联考(11月)生物试题
- 课刘义庆《陈太丘与友期》课件
- 2025年中考英语一轮教材复习 写作话题11 人际交往
- 毛泽东思想和中国特色社会主义理论体系概论(山西青年职业学院)知到智慧树答案
- 《丰田教育手册》课件2
- 文物保护设计方案
- 高中体育教学计划中的攀爬技能训练
- 2024年学校监控室管理制度
- 火灾疏散逃生安全教育课件
- 肿瘤防治讲座知识讲座
- 鼓浪屿发展策划方案
- 《华尔兹基本动作》课件
- 毕业论文-山东省农产品出口贸易的现状及对策研究
- 执纪审查培训课件
- 美团企业管理制度
- 国开电大《人文英语3》一平台机考真题(第十一套)
评论
0/150
提交评论