2025届西藏自治区林芝市高一上数学期末教学质量检测试题含解析_第1页
2025届西藏自治区林芝市高一上数学期末教学质量检测试题含解析_第2页
2025届西藏自治区林芝市高一上数学期末教学质量检测试题含解析_第3页
2025届西藏自治区林芝市高一上数学期末教学质量检测试题含解析_第4页
2025届西藏自治区林芝市高一上数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届西藏自治区林芝市高一上数学期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆,圆,则两圆的位置关系为A.相离 B.相外切C.相交 D.相内切2.已知,且,则下列不等式恒成立的是()A. B.C. D.3.已知函数是幂函数,且其图象与两坐标轴都没有交点,则实数A. B.2C.3 D.2或4.如图,在菱形ABCD中,下列式子成立的是A. B.C. D.5.设,则()A. B.C. D.6.已知函数,,若存在,使得,则实数的取值范围是()A. B.C. D.7.已知全集,则正确表示集合和关系的韦恩图是A. B.C. D.8.的值是A.0 B.C. D.19.函数满足:,已知函数与的图象共有4个交点,交点坐标分别为,,,,则:A. B.C. D.10.设、、依次表示函数,,的零点,则、、的大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数f(x)=sinx-2cosx+的一个零点是,则tan=_________.12.设,若函数在上单调递增,则的取值范围是A. B. C. D.13.一条从西向东的小河的河宽为3.5海里,水的流速为3海里/小时,如果轮船希望用10分钟的时间从河的南岸垂直到达北岸,轮船的速度应为______;14.把物体放在冷空气中冷却,如果物体原来的温度是θ1,空气的温度是θ0℃,那么t后物体的温度θ(单位:)可由公式(k为正常数)求得.若,将55的物体放在15的空气中冷却,则物体冷却到35所需要的时间为___________.15.函数的定义域为_______________16.=________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,圆经过三点(1)求圆的方程;(2)若圆与直线交于两点,且,求的值18.已知(1)求的值(2)的值19.已知,,.(1)求,的值;(2)若,求值.20.已知,且(1)求的值;(2)求的值21.如图,在三棱柱中,平面,,在线段上,,.(1)求证:;(2)试探究:在上是否存在点,满足平面,若存在,请指出点的位置,并给出证明;若不存在,说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用半径之和与圆心距的关系可得正确的选项.【详解】圆,即,圆心为(0,3),半径为1,圆,即,圆心为(4,0),半径为3..所以两圆相离,故选:A.2、D【解析】对A,C利用特殊值即可判断;对B,由对数函数的定义域即可判断,对D,由指数函数的单调性即可判断.【详解】解:对A,令,,则满足,但,故A错误;对B,若使,则需满足,但题中,故B错误;对C,同样令,,则满足,但,故C错误;对D,在上单调递增,当时,,故D正确.故选:D.3、A【解析】根据幂函数的定义,求出m的值,代入判断即可【详解】函数是幂函数,,解得:或,时,,其图象与两坐标轴有交点不合题意,时,,其图象与两坐标轴都没有交点,符合题意,故,故选A【点睛】本题考查了幂函数的定义,考查常见函数的性质,是一道常规题4、D【解析】解:利用菱形的性质可知,第一问中方向不同,错误;选项B中显然不共线,因此错误.,因此C不对;只有D正确5、B【解析】根据已知等式,利用指数对数运算性质即可得解【详解】由可得,所以,所以有,故选:B.【点睛】本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目.6、D【解析】根据条件求出两个函数在上的值域,结合若存在,使得,等价为两个集合有公共元素,然后根据集合关系进行求解即可【详解】当时,,即,则的值域为[0,1],当时,,则的值域为,因为存在,使得,则若,则或,得或,则当时,,即实数a的取值范围是,A,B,C错,D对.故选:D7、B【解析】∵集合∴集合∵集合∴故选B8、B【解析】利用诱导公式和和差角公式直接求解.【详解】故选:B9、C【解析】函数的图象和的图象都关于(0,2)对称,从而可知4个交点两两关于点(0,2)对称,即可求出的值【详解】因为函数满足:,所以的图象关于(0,2)对称,函数,由于函数的图象关于(0,0)对称,故的图象也关于(0,2)对称,故.故答案为C.【点睛】若函数满足,则函数的图象关于点对称10、D【解析】根据题意可知,的图象与的图象的交点的横坐标依次为,作图可求解.【详解】依题意可得,的图象与的图象交点的横坐标为,作出图象如图:由图象可知,,故选:D【点睛】本题主要考查了幂函数、指数函数、对数函数的图象,函数零点,数形结合的思想,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、##-0.5【解析】应用辅助角公式有且,由正弦型函数的性质可得,,再应用诱导公式求.【详解】由题设,,,令,可得,即,,所以,,则.故答案为:12、D【解析】由于函数为奇函数,且在上单调递增,结合函数的图象可知该函数的半周期大于或等于,所以,所以选择D考点:三角函数的图象与性质13、15海里/小时【解析】先求出船的实际速度,再利用勾股定理得到轮船的速度.【详解】设船的实际速度为,船速,水的流速,则海里/小时,∴海里/小时.故答案为:15海里/小时14、2【解析】将数据,,,代入公式,得到,解指数方程,即得解【详解】将,,,代入得,所以,,所以,即.故答案为:215、【解析】由题可知,解不等式即可得出原函数的定义域.【详解】对于函数,有,即,解得,因此,函数的定义域为.故答案为:.16、【解析】利用两角差的正切公式直接求值即可.【详解】=故答案为【点睛】本题主要考查两角差的正切公式,特殊角的三角函数值,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、⑴⑵【解析】(1)利用圆的几何性质布列方程组得到圆的方程;(2)设出点A,B的坐标,联立直线与圆的方程,消去y,确定关于x的一元二次方程,已知的垂直关系,确定x1x2+y1y2=0,利用韦达定理求得a试题解析:⑴因为圆的圆心在线段的直平分线上,所以可设圆的圆心为,则有解得则圆C的半径为所以圆C的方程为⑵设,其坐标满足方程组:消去,得到方程由根与系数的关系可得,由于可得,又所以由①,②得,满足故18、(1)(2)【解析】(1)先求出的值,再求出后可得的值;(2)先求出,再利用二倍角公式化简三角函数式,代入前面的结果可得所求的值.【小问1详解】对于,两边平方得,所以,∴,∵且,,所以,;【小问2详解】联立,解得,∴原式=.19、(1),(2)【解析】(1)先求出,再由同角三角函数基本关系求解即可;(2)根据角的变换,再由两角差的余弦公式求解.【小问1详解】∵,∴.∵,∴,∴,且,解得,∴,【小问2详解】∵,,∴,∴,∴.20、(1);(2)【解析】(1)将条件化为,然后,可得答案;(2)由第一问可得,然后,解出即可.【详解】(1)因为,且,所以故又因为,所以,即,所以所以(2)由(1)知,又因为,所以.因为,,所以,即,解得或因为,所以,所以21、(1)证明见解析;(2)答案见解析.【解析】(1)因为面,所以,结合就有面,从而.(2)取,在平面内过作交于,连结.可以证明四边形为平行四边形,从而,也就是平面.我们还可以在平面内过作,交于,连结.通过证明平面平面得到平面.【详解】解析:(1)∵面,面,∴.又∵,,面,,∴面,又面,∴.(2)(法一)当时,平面.理由如下:在平面内过作交于,连结.∵,∴,又,且,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论