广东顺德华侨中学2025届高一上数学期末教学质量检测试题含解析_第1页
广东顺德华侨中学2025届高一上数学期末教学质量检测试题含解析_第2页
广东顺德华侨中学2025届高一上数学期末教学质量检测试题含解析_第3页
广东顺德华侨中学2025届高一上数学期末教学质量检测试题含解析_第4页
广东顺德华侨中学2025届高一上数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东顺德华侨中学2025届高一上数学期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.对于空间中的直线,以及平面,,下列说法正确的是A.若,,,则B.若,,,则C.若,,,则D.若,,,则2.若直线过点,,则此直线的倾斜角是()A.30° B.45°C.60° D.90°3.我国著名数学家华罗庚曾说:数缺形时少直观,形少数时难人微,数形结合百般好,割裂分家万事休.在数学的学习和研究中,有时可凭借函数的解析式琢磨函数图像的特征.如函数,的图像大致为()A. B.C. D.4.三个数的大小关系是()A. B.C. D.5.从数字中随机取两个不同的数,分别记为和,则为整数的概率是()A. B.C. D.6.已知函数,则()A. B.C. D.17.函数(其中mR)的图像不可能是()A. B.C. D.8.若,则的值为A. B.C. D.9.已知集合和关系的韦恩图如下,则阴影部分所表示的集合为()A. B.C. D.10.已知幂函数的图像过点,若,则实数的值为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,关于方程有四个不同的实数解,则的取值范围为__________12.已知,,则___________.13.一条光线从A处射到点B(0,1)后被轴反射,则反射光线所在直线的一般式方程为_____________.14.用二分法求方程x2=2的正实根的近似解(精确度0.001)时,如果我们选取初始区间是[1.4,1.5],则要达到精确度至少需要计算的次数是______________15.若,,则________.16.已知,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,当点在的图像上移动时,点在函数的图像上移动,(1)若点的坐标为,点也在图像上,求的值(2)求函数的解析式(3)当,令,求在上的最值18.已知集合A为函数的定义域,集合B是不等式的解集(1)时,求;(2)若,求实数a的取值范围19.在①;②函数为偶函数:③0是函数的零点这三个条件中选一个条件补充在下面问题中,并解答下面的问题问题:已知函数,,且______(1)求函数的解析式;(2)判断函数在区间上的单调性,并用定义证明注:如果选择多个条件分别解答,按第一个解答计分20.已知,当时,.(1)若函数的图象过点,求此时函数的解析式;(2)若函数只有一个零点,求实数a的值.21.已知函数,它的部分图象如图所示.(1)求函数的解析式;(2)当时,求函数的值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据空间直线和平面的位置关系对四个选项逐一排除,由此确定正确的选项【详解】对于A选项,可能异面,故A错误;对于B选项,可能有,故B错误;对于C选项,的夹角不一定为90°,故C错误;因为,故,因为,故,故D正确,故选D.【点睛】本小题主要考查空间两条直线的位置关系,考查直线和平面、平面和平面位置关系的判断,属于基础题.2、A【解析】根据两点求解直线的斜率,然后利用斜率求解倾斜角.【详解】因为直线过点,,所以直线的斜率为;所以直线的倾斜角是30°,故选:A.3、B【解析】根据题意求出函数的定义域并判断出函数的奇偶性,再代入特殊值点即可判断答案.【详解】由题意,函数定义域为,,于是排除AD,又,所以C错误,B正确.故选:B.4、A【解析】利用指数函数、对数函数、正弦函数的单调性结合中间量法即可求解【详解】解:,,,故选:A5、B【解析】先计算出从数字中随机取两个不同的数,共有种情况,再求出满足为整数的情况,即可求出为整数的概率.【详解】解:从数字中随机取两个不同的数,则有种选法,有种选法,共有种情况;则满足为整数的情况如下:当时,或有种情况;当时,有种情况;当或时,则不可能为整数,故共有种情况,故为整数的概率是:.故选:B.6、D【解析】由分段函数定义计算【详解】,所以故选:D7、C【解析】对m分类讨论,利用对勾函数的单调性,逐一进行判断图像即可.【详解】易见,①当时,图像如A选项;②当时,时,易见在递增,得在递增;时,令,得为对勾函数,所以在递增,递减,所以根据复合函数单调性得在递减,递增,图像为D;③当时,时,易见在递减,故在递减;时为对勾函数,所以在递减,递增,图像为B.因此,图像不可能是C.故选:C.【点睛】本题考查了利用对勾函数单调性来判断函数的图像,属于中档题.8、C【解析】由题意求得,化简得,再由三角函数的基本关系式,联立方程组,求得,代入即可求解.【详解】由,整理得,所以,又由三角函数的基本关系式,可得由解得,所以.故选C.【点睛】本题主要考查了三角函数的基本关系式的化简求值问题,其中解答中熟记三角函数的基本关系式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.9、B【解析】首先判断出阴影部分表示,然后求得,再求得.【详解】依题意可知,,且阴影部分表示.,所以.故选:B【点睛】本小题主要考查根据韦恩图进行集合的运算,属于基础题.10、D【解析】将点代入函数解析式,求出参数值,令函数值等于3,可求出自变量的值.详解】依题意有2=4a,得a=,所以,当时,m=9.【点睛】本题考查函数解析式以及由函数值求自变量,一般由函数值求自变量的值时要注意自变量取值范围以及题干的要求,避免多解.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】作出的图象如下:结合图像可知,,故令得:或,令得:,且等号取不到,故,故填.点睛:一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑函数图像来解决,转化为过定点的直线与抛物线变形图形的交点问题,对函数图像处理能力要求较高.12、【解析】根据余弦值及角的范围,应用同角的平方关系求.【详解】由,,则.故答案为:.13、【解析】根据反射光线的性质,确定反射光线上的两个点的坐标,最后确定直线的一般式方程.【详解】因为一条光线从A处射到点B(0,1)后被轴反射,所以点A关于直线对称点为,根据对称性可知,反射光线所在直线过点,又因为反射光线所在直线又过点,所以反射光线所在直线斜率为,所以反射光线所在直线方程为,化成一般式得:,故答案为:.14、7【解析】设至少需要计算n次,则n满足,即,由于,故要达到精确度要求至少需要计算7次15、【解析】,然后可算出的值,然后可得答案.【详解】因为,,所以,所以,所以,,因为,所以,故答案为:16、【解析】将未知角化为已知角,结合三角恒等变换公式化简即可.【详解】解:因为,所以.故答案为:.【点睛】三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)见解析【解析】(1)首先可通过点坐标得出点的坐标,然后通过点也在图像上即可得出的值;(2)首先可以设出点的坐标为,然后得到与、与的关系,最后通过在的图像上以及与、与的关系即可得到函数的解析式;(3)首先可通过三个函数的解析式得出函数的解析式,再通过函数的单调性得出函数的单调性,最后根据函数的单调性即可计算出函数的最值【详解】(1)当点的坐标为,点的坐标为,因为点也在图像上,所以,即;(2)设函数上,则有,即,而在的图像上,所以,代入得;(3)因为、、,所以,,令函数,因为当时,函数单调递减,所以当时,函数单调递增,,,综上所述,最小值为,最大值为【点睛】本题考查了对数函数的相关性质,考查了对数的运算、对数函数的单调性以及最值,考查函数方程思想以及化归与转化思想,体现了基础性与综合性,提高了学生的逻辑推理能力18、(1)(2)【解析】(1)由函数定义域求A,由不等式求B,按照集合交并补运算规则即可;(2)由A推出B的范围,由于a的不确定性,可以将不等式转换,用基本不等式解决.【小问1详解】由,解得:,即;当时,由得:或,∴,∴,∴;【小问2详解】由知:,即对任意,恒成立,∴,∵,当且仅当,即时取等号,∴,即实数a的取值范围为;综上:,.19、(1)(2)单调递增,证明见解析【解析】(1)若选条件①,根据及指数对数恒等式求出的值,即可求出函数解析式;若选条件②,根据,即可得到,从而求出的值,即可求出函数解析式;若选条件③,直接代入即可得到方程,求出的值,即可求出函数解析式;(2)利用定义法证明函数单调性,按照设元、作差、变形、判断符号、下结论的步骤完成即可;【小问1详解】解:若选条件①.因为,所以,即解得.所以若选条件②.函数的定义域为R.因为为偶函数,所以,,即,,化简得,所以,即.所以若选条件③.由题意知,,即,解得.所以【小问2详解】解:函数在区间上单调递增证明如下:,,且,则因为,,,所以,即又因为,所以,即所以,即所以在区间上单调递增20、(1)(2)或.【解析】(1)由计算;(2)只有一个解,由对数函数性质转化为方程只有一个正根,分,和讨论【详解】(1),当时,.函数的图象过点,,解得,此时函数.(2),∵函数只有一个零点,只有一个正解,∴当时,,满足题意;当时,只有一个正根,若,解得,此时,满足题意;若方程有两个相异实根,则两根之积为,此时方程有一个正根,符合题意;综上,或.【点睛】本题考查函数零点与方程根的分布问题.解题时注意函数的定义域,在转化时要正确确定方程根的范围,对多项式方程,要按最高次项系数为0和不为0进行分类讨论21、(1);(2).【解析】(1)依题意,则,将点的坐标代入函数的解析式可得,故,函数解析式为.(2)由题意可得,结合三角函数的性质可得函数的值域为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论