2025届甘肃省武威市民勤一中高一上数学期末统考模拟试题含解析_第1页
2025届甘肃省武威市民勤一中高一上数学期末统考模拟试题含解析_第2页
2025届甘肃省武威市民勤一中高一上数学期末统考模拟试题含解析_第3页
2025届甘肃省武威市民勤一中高一上数学期末统考模拟试题含解析_第4页
2025届甘肃省武威市民勤一中高一上数学期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届甘肃省武威市民勤一中高一上数学期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个三棱锥的三视图如右图所示,则这个三棱锥的表面积为()A. B.C. D.2.函数的部分图象如图所示,将函数的图象向左平移个单位长度后得到的图象,则下列说法正确的是()A.函数为奇函数B.函数的最小正周期为C.函数的图象的对称轴为直线D.函数的单调递增区间为3.命题“对,都有”的否定为()A.对,都有 B.对,都有C.,使得 D.,使得4.的值是()A B.C. D.5.从数字中随机取两个不同的数,分别记为和,则为整数的概率是()A. B.C. D.6.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是A.若,,,则B.若,,,则C.若,,,则D.若,,,则7.下列函数是偶函数,且在上单调递减的是A. B.C. D.8.若函数的图像向左平移个单位得到的图像,则A. B.C. D.9.如果关于x的不等式x2<ax+b的解集是{x|-1<x<3},那么ba等于()A.-9 B.9C.- D.-810.已知函数,则()A.2 B.5C.7 D.9二、填空题:本大题共6小题,每小题5分,共30分。11.计算______.12.____13.函数在区间上的单调性是______.(填写“单调递增”或“单调递减”)14.若函数(,且),在上的最大值比最小值大,则______________.15.已知函数,若,则实数的取值范围为______.16.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G,作用在行李包上的两个拉力分别为,,且,与的夹角为.给出以下结论:①越大越费力,越小越省力;②的范围为;③当时,;④当时,.其中正确结论的序号是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面直角坐标系中,角的始边与轴的非负半轴重合,终边在第二象限且与单位圆相交于点,过点作轴的垂线,垂足为点,.(1)求的值;(2)求的值.18.已知集合,函数的定义域为集合.(1)若,求实数的取值范围;(2)求满足的实数的取值范围.19.已知函数f(x)=(1)求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值20.计算下列各式(式中字母均是正数).(1)(2)21.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,点M为PC的中点(1)求证:PA∥平面BMD;(2)求证:AD⊥PB;(3)若AB=PD=2,求点A到平面BMD的距离

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由三视图可画出该三棱锥的直观图,如图,图中正四棱柱的底面边长为,高为,棱锥的四个面有三个为直角三角形,一个为腰长为,底长的等腰三角形,其面积分别为:,所以三棱锥的表面积为,故选B.2、D【解析】根据图象得到函数解析式,将函数的图象向左平移个单位长度后得到的图象,可得解析式,分别根据正弦函数的奇偶性、单调性、周期性与对称性,对选项中的结论判断,从而可得结论.【详解】由图象可知,,∴,则.将点的坐标代入中,整理得,∴,即;,∴,∴.∵将函数的图象向左平移个单位长度后得到的图象,∴.,∴既不是奇函数也不是偶函数,故A错误;∴的最小正周期,故B不正确.令,解得,则函数图像的对称轴为直线.故C错误;由,可得,∴函数的单调递增区间为.故D正确;故选:D.【点睛】关键点睛:本题主要考查三角函数的图象与性质,熟记正弦函数的奇偶性、单调区间、最小正周期与对称轴是解决本题的关键.3、D【解析】全称命题的否定是特称命题,把任意改为存在,把结论否定.【详解】,都有的否定是,使得.故选:D4、C【解析】由,应用诱导公式求值即可.【详解】.故选:C5、B【解析】先计算出从数字中随机取两个不同的数,共有种情况,再求出满足为整数的情况,即可求出为整数的概率.【详解】解:从数字中随机取两个不同的数,则有种选法,有种选法,共有种情况;则满足为整数的情况如下:当时,或有种情况;当时,有种情况;当或时,则不可能为整数,故共有种情况,故为整数的概率是:.故选:B.6、D【解析】,,故选D.考点:点线面的位置关系.7、D【解析】函数为奇函数,在上单调递减;函数为偶函数,在上单调递增;函数为非奇非偶函数,在上单调递减;函数为偶函数,在上单调递减故选D8、A【解析】函数的图象向左平移个单位,得到的图象对应的函数为:本题选择A选项.9、B【解析】根据一元二次不等式的解集,利用根与系致的关系求出的值

,再计的值.【详解】由不等式的解集是,所以是方程的两个实数根.则,所以所以故选:B10、D【解析】先求出,再求即可,【详解】由题意得,所以,故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、7【解析】根据对数与指数的运算性质计算即可得解.【详解】解:.故答案为:7.12、-1【解析】根据和差公式得到,代入化简得到答案.【详解】故答案为:【点睛】本题考查了和差公式,意在考查学生的计算能力.13、单调递增【解析】求出函数单调递增区间,再判断作答.【详解】函数的图象对称轴为,因此,函数的单调递增区间为,而,所以函数在区间上的单调性是单调递增.故答案为:单调递增14、或.【解析】分和两种情况,根据指数函数的单调性确定最大值和最小值,根据已知得到关于实数的方程求解即得.【详解】若,则函数在区间上单调递减,所以,,由题意得,又,故;若,则函数在区间上单调递增,所以,,由题意得,又,故.所以的值为或.【点睛】本题考查函数的最值问题,涉及指数函数的性质,和分类讨论思想,属基础题,关键在于根据指数函数的底数的不同情况确定函数的单调性.15、或【解析】令,分析出函数为上的减函数且为奇函数,将所求不等式变形为,可得出关于的不等式,解之即可.【详解】令,对任意的,,故函数的定义域为,因为,则,所以,函数为奇函数,当时,令,由于函数和在上均为减函数,故函数在上也为减函数,因为函数在上为增函数,故函数在上为减函数,所以,函数在上也为减函数,因为函数在上连续,则在上为减函数,由可得,即,所以,,即,解得或.故答案为:或.16、①④.【解析】根据为定值,求出,再对题目中的命题分析、判断正误即可.【详解】解:对于①,由为定值,所以,解得;由题意知时,单调递减,所以单调递增,即越大越费力,越小越省力;①正确.对于②,由题意知,的取值范围是,所以②错误.对于③,当时,,所以,③错误.对于④,当时,,所以,④正确.综上知,正确结论的序号是①④.故答案为:①④.【点睛】此题考查平面向量数量积的应用,考查分析问题的能力,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由三角函数的定义可得出的值,再结合同角三角函数的基本关系可求得的值;(2)利用诱导公式结合弦化切可求得结果.【小问1详解】解:由题意可知点的横坐标为,则,因为为第二象限角,则,故.【小问2详解】解:.18、(1)或;(2)或.【解析】(1)由知4满足函数的定义域,由此可得,解不等式可得所求范围.(2)由可得,再根据的大小关系求得集合A,然后根据转化为关于实数的不等式组,解不等式组可得所求范围试题解析:(1)因为,∴,解得或.∴实数的取值范围为(2)由于,当时,即时,,函数无意义,∴,由,得,解得,∴.①当,即时,,由得,解得;②当,即时,,,此时不满足;③当,即时,,由得,解得.又,故.综上或∴实数的取值范围是或.点睛:(1)解答本题时要注意分类讨论的运用,根据实数的不同的取值得到不同的集合;另外还应注意转化思想的运用,在本题中将集合间的包含关系转化为不等式组求解(2)对于题中的对数函数,要注意定义域的限制,特别是在本题中得到这一隐含条件是被容易忽视的问题19、(1)π(2)最大值1,最小值-【解析】(1)根据正弦函数的性质即可求解;(2)将看作整体,根据正弦函数的图像即可求解.【小问1详解】f(x)=sin,所以f(x)的最小正周期为T==π;【小问2详解】因为x∈,所以2x+∈,根据正弦函数的图像可知:当2x+=,即x=时,f(x)取得最大值1,当2x+=,即x=时,f(x)取得最小值-;综上,最小正周期为,最大值为1,最小值为.20、(1)2;(2).【解析】(1)利用对数的运算性质即得;(2)利用指数幂的运算法则运算即得.【小问1详解】;【小问2详解】.21、(1)详见解析;(2)详见解析;(3).【解析】(1)设AC和BD交于点O,MO为三角形PAC的中位线可得MO∥PA,再利用直线和平面平行的判定定理,证得结论(2)由PD⊥平面ABCD,可得PD⊥AD,再由cos∠BAD,证得AD⊥BD,可证AD⊥平面PBD,从而证得结论(3)点A到平面BMD的距离等于点C到平面BMD的距离h,求出MN、MO的值,利用等体积法求得点C到平面MBD的距离h【详解】(1)证明:设AC和BD交于点O,则由底面ABCD是平行四边形可得O为AC的中点由于点M为PC的中点,故MO为三角形PAC的中位线,故MO∥PA.再由PA不在平面BMD内,而MO在平面BMD内,故有PA∥平面BMD(2)由PD⊥平面ABCD,可得PD⊥AD,平行四边形ABCD中,∵∠BCD=60°,AB=2AD,∴cos∠BADcos60°,∴AD⊥BD这样,AD垂直于平面PBD内的两条相交直线,故AD⊥平面PBD,∴AD⊥PB(3)若AB=PD=2,则AD=1,BD=AB•sin∠BAD=2,由于平面BMD经过AC的中点,故点A到平面BMD的距离等于点C到平面BMD的距离取CD得中点N,则MN⊥平面ABCD,且MNPD=1设点C到平面MBD的距离为h,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论