第一章勾股定理单元测试(能力提升)(备作业)2021-2022学年八年级数学上册(北师大版)_第1页
第一章勾股定理单元测试(能力提升)(备作业)2021-2022学年八年级数学上册(北师大版)_第2页
第一章勾股定理单元测试(能力提升)(备作业)2021-2022学年八年级数学上册(北师大版)_第3页
第一章勾股定理单元测试(能力提升)(备作业)2021-2022学年八年级数学上册(北师大版)_第4页
第一章勾股定理单元测试(能力提升)(备作业)2021-2022学年八年级数学上册(北师大版)_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章勾股定理单元测试(能力提升)一、单选题1.下列各组数中,不能作直角三角形三边长的是().A.3、4、5 B.5、12、13 C.7、24、25 D.7、9、13【答案】D【解析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.解:选项A:∵3²+4²=5²,∴能构成直角三角形三边,故选项A不符合题意;选项B:∵5²+12²=13²,∴能构成直角三角形三边,故选项B不符合题意;选项C:∵7²+24²=25²,∴能构成直角三角形三边,故选项C不符合题意;选项D:∵7²+9²=49+81=130≠13²,∴不能构成直角三角形三边,故选项D符合题意;故选:D【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2.如图,在中,D,E分别是边BC,AC的中点,已知,,,则AB的长为().A. B. C.10 D.【答案】A【解析】设,,在和中,利用勾股定理可证得,在Rt△ABC中,利用即可求解.设,,在中,,①在中,,②①+②,,∴,在Rt△ABC中,,故选A.【点睛】本题考查了勾股定理,借助中点的定义,灵活运用勾股定理是解答的关键.3.如图正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从A点爬行到M点的最短距离为()A. B.5 C. D.【答案】D【解析】把此正方体的点所在的面展开,然后在平面内,利用勾股定理求点和点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于2,另一条直角边长等于3,利用勾股定理可求得.解:如图示,将正方体展开,连接、,根据两点之间线段最短,.答:蚂蚁从点爬行到点的最短距离为.故选:D.【点睛】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.4.如图,已知1号、4号两个正方形的面积之和为7,2号、3号两个正方形的面积之和为4,则a、b、c三个正方形的面积之和为()A.11 B.15 C.10 D.22【答案】B【解析】由直角三角形的勾股定理以及正方形的面积公式不难发现:a的面积等于1号的面积加上2号的面积,b的面积等于2号的面积加上3号的面积,c的面积等于3号的面积加上4号的面积,据此可以求出三个的面积之和.利用勾股定理可得:,,∴故选B【点睛】本题主要考查勾股定理的应用,熟练掌握相关性质定理是解题关键.5.如图1是由个全等的边长为的正方形拼成的图形,现有两种不同的方式将它沿着虚线剪开,甲将它分成三块,乙将它分成四块,各自要拼一个面积是的大正方形,则()A.甲、乙都可以 B.甲可以,乙不可以C.甲不可以,乙可以 D.甲、乙都不可以【答案】A【解析】直接利用图形的剪拼方法结合正方形的性质分别分析得出答案.解:如图所示:可得甲、乙都可以拼一个面积是5的大正方形.故选:.【点睛】此题主要考查了图形的剪拼以及正方形的性质,正确应用正方形的性质是解题关键.6.下列命题①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;②如果三角形的三个内角的度数比是3:4:5,那么这个三角形是直角三角形;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a,b,c,(a>b=c),那么a2:b2:c2=2:1:1.其中正确的是()A.①② B.①③ C.①④ D.②④【答案】C【解析】分别利用勾股数的定义、勾股定理以及等腰直角三角形的边的关系分别判断得出即可.解:①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数,是真命题;②如果三角形的三个内角的度数比是3:4:5,则这三角形的三个内角度数为:45°,60°,75°,因此这个三角形不是直角三角形,原命题是假命题;③如果一个三角形的三边是12、25、21,因为,故此三角形不是直角三角形,故原命题是假命题;④一个等腰直角三角形的三边是a,b,c,(a>b=c),那么a2:b2:c2=2:1:1,是真命题;故选:C.【点睛】此题主要考查了命题与定理,熟练掌握勾股定理以及等腰直角三角形的性质是解题关键.7.如图,在中,是边上的高线,是边上的中线,于点,.若,则的面积是()A. B. C. D.【答案】D【解析】连接DE,证明DE=DC=5,推出AB=10,AD=6,进而求出的面积即可得出结果.如图,连接,作于F点,是边上的高线,在中,根据“斜中半”定理可知,,,,为等腰三角形,且由勾股定理知:,,,是边上的中线,,,得,,,在中,由“三线合一”性质,知G为CE的中点,,故选:D.【点睛】本题考查了直角三角形斜边中线的性质,解直角三角形,三角形的面积等知识点,解决问题的关键是学会添加常用辅助线,构造直角三角形解决问题.8.2019年10月1日,中华人民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举行了简朴而降重的升旗仪式.倾听着雄壮的国歌声,目送着五星红旗级缓升起,不禁心潮澎湃,爱国之情油然而生.爱动脑筋的王梓涵设计了一个方案来测量学校旗杆的高度.将升旗的绳子拉直到末端刚好接触地面,测得此时绳子末端距旗杆底端2米,然后将绳子末端拉直到距离旗杆5m处,测得此时绳子末端距离地面高度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的高度为()A.10m B.11m C.12m D.13m【答案】B【解析】根据题意画出示意图,设旗杆高度为xm,可得AC=AD=xm,AB=(x﹣1)m,BC=5m,在Rt△ABC中利用勾股定理可求出x.设旗杆高度为xm,可得AC=AD=xm,AB=(x﹣1)m,BC=5m,根据勾股定理得,绳长的平方=x2+22,右图,根据勾股定理得,绳长的平方=(x﹣1)2+52,∴x2+22=(x﹣1)2+52,解得x=11,故选:B.【点睛】此题考查勾股定理,题中有两种拉绳子的方式,故可以构建两个直角三角形,形状不同大小不同但都是直角三角形且绳子的长度是不变的,因此根据绳子建立勾股定理的等式,由此解答问题.9.如图,三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着直线AD翻折,得到△AED,DE交AC于点G,连接BE交AD于点F.若DG=EG,AF=4,AB=5,△AEG的面积为,则BD的长为()A. B. C. D.【答案】A【解析】首先根据SAS证明△BAF≌△EAF可得AF⊥BE,根据三角形的面积公式求出AD,根据勾股定理求出BD即可.解:由折叠得,,∠BAF=∠EAF,在△BAF和△EAF中,∴△BAF≌△EAF(SAS)∴BF=EF∴AF⊥BE又∵AF=4,AB=5,∴在△ADE中,EF⊥AD,DG=EG,设DE边上的高线长为h,∴即∵,∴∴∴∴在Rt△BDF中,,,∴故选:A【点睛】本题考查翻折变换,三角形的面积,勾股定理等知识,解题的关键是灵活运用所学知识解决问题.10.如图,在中,点D是边上的中点,连接,将沿着翻折,得到,与交于点F,连接.若,则点C到的距离为()A. B. C. D.【答案】C【解析】连接BE,延长CD交BE于G点,过C作CH⊥AB于H,由折叠的性质及中点性质,可得△AEB是直角三角形,且G点是BE的中点,从而CG⊥BE,由勾股定理可求得BE的长,则根据△ABC的面积相等一方面可表示为,另一方面其面积为△BCD与△ACD面积的和,从而可求得CH的长.连接BE,延长CD交BE于G点,过C作CH⊥AB于H,如图所示由折叠的性质,得:BD=ED,CB=CE∴CG是线段BE的垂直平分线∴BG=BE∵D点是AB的中点∴BD=AD,∴AD=ED∴∠DAE=∠DEA∵BD=ED∴∠DEB=∠DBE∵∠DAE+∠BEA+∠DBE=180°即∠DAE+∠DEA+∠DEB+∠DBE=180°∴2∠DEA+2∠DEB=180°∴∠DEA+∠DEB=90°即∠AEB=90°在Rt△AEB中,由勾股定理得:∴∵∴∴故选:C.【点睛】本题考查了直角三角形的判定、勾股定理、线段垂直平分线的判定,利用面积相等求线段的长,关键是得出CG⊥BE,从而可求得△BCD的面积也即△ABC的面积.二、填空题11.如图,已知OA=AB,数轴上点C表示的实数是_____________,点E表示的实数是____________.【答案】【解析】利用勾股定理求出OB,即可得到点C表示的实数;利用勾股定理求出OD可得到点E表示的实数.解:由题意得:,∴,即点C表示的实数是,∴,∴,即点E表示的实数是,故答案为:,.【点睛】本题考查了勾股定理与无理数,熟练应用勾股定理是解题关键.12.如图,在△ABC中,∠A=30°,∠B=90°,BC=6,一个边长为2的正方形DEFH沿边CA方向向下平移,平移开始时点F与点C重合,当正方形DEFH的平移距离为__________时,有DC2=AE2+BC2成立,【答案】【解析】连接CD,设平移的距离为x,则CF=x,根据勾股定理得到CD2=22+(x+2)2,由∠A=30°,∠B=90°,BC=6,得到AC=12,AE=122x=10x,再根据DC2=AE2+BC2列出方程即可求解.连接CD,设平移的距离为x,则CF=x,根据勾股定理得到CD2=22+(x+2)2,∵∠A=30°,∠B=90°,BC=6,∴AC=12,AE=122x=10x,∴AE2+BC2=(10x)2+62,∵DC2=AE2+BC2∴22+(x+2)2=(10x)2+62,解得x=故填.【点睛】此题主要考查勾股定理的应用,解题的关键是构造直角三角形,利用勾股定理进行求解.13.若直角三角形的三边分别为a、a+b、a+2b,则的值为___【答案】3或-5【解析】若b是正数,则a、a+b、a+2b中a+2b最大,即a+2b是斜边,由勾股定理可得(a+2b)2=a2+(a+b)2,化简得a2-2ab-3b2=0,所以(a+b)(a3b)=0,又a+b是一条直角边,因此a+b>0,所以a=3b>0,即=3;若b是负数,则a、a+b、a+2b中a最大,即a是斜边,由勾股定理可得a2=(a+b)2+(a+2b)2,化简得a2+6ab+5b2=0,即(a+b)(a+5b)=0,同上a+b>0,所以a=5b,即=5.所以的值为3或-5.点睛:本题考查了勾股定理的应用,正确分类讨论是解决本题的关键.14.如图,在中于点D,点P是线段AD上一个动点,过点P作于点E,连接PB,则的最小值为________.【答案】【解析】根据题意点B与点C关于AD对称,所以过点C作AB的垂线,与AD的交点即点P,求出CE即可得到答案∵∴点B与点C关于AD对称过点C作CE⊥AB于一点即为点P,此时最小∵∴BD=2在Rt△ABC中,∵S△ABC=∴得故此题填【点睛】此题考察最短路径,根据题意找到对称点,作直角三角形,利用勾股定理解决问题15.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑________米.【答案】0.5【解析】结合题意可知AB=DE=2.5米,BC=1.5米,BD=0.5米,∠C=90°,∴AC===2(米).∵BD=0.5米,∴CD=2米,∴CE===1.5(米),∴AE=ACEC=0.5(米).故答案为0.5.点睛:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.16.如图,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,则AB=_____.【答案】21【解析】在AB上截取AE=AD,连接CE,过点C作CF⊥AB于点F,先证明△ADC≌△AEC,得出AE=AD=9,CE=CD=BC=10的长度,再设EF=BF=x,在Rt△CFB和Rt△CFA中,由勾股定理求出x,再根据AB=AE+EF+FB求得AB的长度.如图所示,在AB上截取AE=AD,连接CE,过点C作CF⊥AB于点F,∵AC平分∠BAD,

∴∠DAC=∠EAC.

在△AEC和△ADC中,

∴△ADC≌△AEC(SAS),

∴AE=AD=9,CE=CD=BC=10,

又∵CF⊥AB,∴EF=BF,

设EF=BF=x.

∵在Rt△CFB中,∠CFB=90°,∴CF2=CB2BF2=102x2,

∵在Rt△CFA中,∠CFA=90°,∴CF2=AC2AF2=172(9+x)2,即102x2=172(9+x)2,

∴x=6,

∴AB=AE+EF+FB=9+6+6=21,

∴AB的长为21.故答案是:21.【点睛】考查全等三角形的判定和性质、勾股定理和一元二次方程等知识,解题的关键是作辅助线,构造全等三角形,再运用用方程的思想解决问题.17.定义:如图,点、点把线段分割成和,若以为边的三角形是一个直角三角形,则称点、点是线段的勾股分割点.已知点点是线段的勾股分割点,,则_____.【答案】或【解析】①当MN为最长线段时,由勾股定理求出BN;②当BN为最长线段时,由勾股定理求出BN即可.解:当为最长线段时,点是线段的勾股分割点,;当为最长线段时,点是线段的勾股分割点,.综上所述:或.故答案为:或.【点睛】本题考查了勾股定理,关键是熟悉勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,注意分类思想的应用.18.如图,在一次测绘活动中,在港口A的位置观测停放于B、C两处的小船,测得船B在港口A北偏东75°方向12海里处,船C在港口A南偏东15°方向9海里处,则船B与船C之间的距离为__________海里.【答案】【解析】根据题目中的已知角度,求出,再利用勾股定理列方程计算.由题意知,,在中,,,则,解得:故答案为:15【点睛】本题考查了勾股定理的应用,突破口在于找到直接三角形.19.如图,长方体的底面边长分别为1cm和4cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短需要_______________cm.(结果用含n的代数式表示)【答案】2【解析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短结合勾股定理解答.解:将长方体展开,连接A、B.从点A开始经过4个侧面缠绕n圈到达点B,相当于两条直角边分别是10n和6,根据两点之间线段最短,则AB==2cm.故填:2.【点睛】本题主要考查平面展开−最短路径问题,解题的关键是得到两条直角边分别是10n和6,根据两点之间线段最短,运用勾股定理进行解答.20.如图,已知,过作,且;再过作且;又过作且;又过作且;……,按照这种方法依次作下去得到一组直角三角形,,,,……,它们的面积分别为,,,,……,那么______.【答案】.【解析】利用勾股定理解直角三角形,然后利用三角形面积公式计算三角形面积,从而发现规律.解:由题意可得在中,∴同理可得:…∴故答案为:【点睛】本题考查勾股定理解直角三角形及数字的规律探索,准确利用勾股定理及三角形面积公式进行计算是解题关键.21.如图,四边形ABCD中,点E在CD上,交AC于点F,,若,,则__________.【答案】7【解析】证明△ABF≌△DCA可得AD=AF,AC=BF,过点D作DG垂直于AC于点G,可得DG=GC=3,GF=GCFC=1,在△ADG中利用勾股定理即可求得AD,从而求得AC.解:∵BE∥AD,∴∠AFB=∠CAD,∵,∴△ABF≌△DCA(AAS),∴AD=AF,AC=BF,过点D作DG垂直于AC于点G,∠ACD=45°,,∴DG=GC=3,∴GF=GCFC=32=1,设AD=AF=x,则AG=x1,由勾股定理得32+(x1)2=x2,解得x=5,∴AD=5,BF=AC=AF+CF=5+2=7,故答案为:7.【点睛】此题考查勾股定理以及全等三角形的判定和性质,关键是根据全等三角形的判定和性质解答.22.如图,中,,的角平分线,相交于点P,过P作交的延长线于点F,交于点H,则下列结论:①;②;③;④平分;其中正确的结论是___________.(填正确结论的序号)【答案】①②③【解析】由三角形的角平分线的含义结合三角形的内角和定理可判断①,先证明△ABP≌△FBP(ASA)与△APH≌△FPD(ASA),结合可判断②,由△ABP≌△FBP,△APH≌△FPD,可得S△APB=S△FPB,S△APH=S△FPD,再证明HD∥EP,可判断③,若DH平分∠CDE,推导DE∥AB,这个显然与条件矛盾,可判断④;解:在△ABC中,∵∠ACB=90°,∴,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP(ASA),∴∠BAP=∠BFP,AB=FB,PA=PF,在△APH和△FPD中,,∴△APH≌△FPD(ASA),∴PH=PD,,故②正确,∵△ABP≌△FBP,△APH≌△FPD,∴S△APB=S△FPB,S△APH=S△FPD,PH=PD,∵∠HPD=90°,∴∠HDP=∠DHP=45°=∠BPD,∴HD∥EP,∴S△EPH=S△EPD,∴S△APH=S△AED,故③正确,若DH平分∠CDE,则∠CDH=∠EDH,∵DH∥BE,∴∠CDH=∠CBE=∠ABE,∴∠CDE=∠ABC,∴DE∥AB,这个显然与条件矛盾,故④错误;故答案为:①②③.【点睛】本题考查了三角形的角平分线的性质,三角形全等的判定方法,三角形内角和定理,三角形的面积,勾股定理的应用等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.三、解答题23.如图,已知与有一个公共点C,其中,若,,,,.求证:.【答案】见详解.【解析】先利用勾股定理求出AC2和CE2的值,再根据勾股定理的逆定理证明△ACE为直角三角形.证明:∵,∴在中,根据勾股定理同理可求.在中∵..∴.∴为直角三角形.【点睛】本题考查勾股定理和勾股定理逆定理的综合运用,如果三角形的三边满足两边的平方和等于第三边的平方,那么这个三角形为直角三角形,本题依次可证.24.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,可以用“面积法”来证明.将两个全等的直角三角形按如图所示摆放,其中∠DAB=90°,求证:a2+b2=c2.【答案】证明见解析.【解析】根据即可得证.如图,过点D作,交BC延长线于点F,连接BD,则,由全等三角形的性质得:,,,,即,整理得:.【点睛】本题考查了勾股定理的证明,掌握“面积法”是解题关键.25.如图,某小区对位于小路AC同侧的两个喷泉A,B的管道进行铺设.供水点M在小路AC上,喷泉A,B的距离是400米,供水点M到AB的距离MN是150m,BM=250m.(1)供水点M到A,B两个喷泉铺设的管道总长是多少米?(2)改变供水M的在AC上的位置,若使管道BM最短,求出此时供水点M到A,B两个喷泉铺设的管道总长是多少米?.【答案】(1)500m;(2)560m【解析】(1)根据勾股定理依次求出BN和AM,供水管道总长即为AM+BM;

(2)根据垂线段的性质可画出对应图,再根据勾股定理分别在Rt△BMM'和Rt△BAM'中表示,列出方程求解即可求得MM',由此可求得和AM'即可求解.解:(1)由题意可得:MN⊥AB,∴∠MNA=∠MNB=90°,在Rt△MNB中,∠MNB=90°,BN=,∵AB=400,∴AN=AB﹣BN=200,在Rt△AMN中,∠MNA=90°,AM=,∴供水点M到喷泉A,B需要铺设的管道总长=250+250=500m;(2)由题意可得:BM'⊥AC,AM=BM=250,AB=400,∴∠BM'M=90°,设MM'=x,则AM'=x+250,在Rt△BMM'中,∠BM'M=90°,,在Rt△BAM'中,∠BM'M=90°,,∴,∴,∴,∴,∴供水点M'到喷泉A,B需要铺设的管道总长=320+240=560m.【点睛】本题考查勾股定理的应用,线段垂线段的性质.(2)中能正确作出图形,并熟练掌握方程思想是解题关键.26.如图1,在中,,,是的高,且.(1)求的长;(2)是边上的一点,作射线,分别过点,作于点,于点,如图2,若,求与的和.【答案】(1)3;(2).【解析】(1)根据勾股定理可求AD,再根据勾股定理可求CD,根据BC=BD+CD即可求解;(2)根据三角形面积公式可求AF与CG的和.(1)在Rt△ABD中,ADB=90,由勾股定理得:AD=,在Rt△ACD中,ADC=90,由勾股定理得:CD=,∴BC=BD+CD=1+2=3,∴BC的长为3;(2)∵AF⊥BE,CG⊥BE,BE=,∴,=,=,而=,∴=,即AF与CG的和为.【点睛】本题考查了勾股定理、三角形面积法的应用,正确运用勾股定理是解题的关键.27.如图,某城市接到台风警报,在该市正南方向的处有一台风中心,沿方向以的速度移动,已知城市到的距离.(1)台风中心经过多长时间从移动到点?(2)已知在距台风中心的圆形区域内都会受到不同程度的影响,若在点的工作人员早上6:00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作?【答案】(1)台风中心经过16小时时间从B移动到D点;(2)他们要在20时到24时时间段内做预防工作【解析】(1)首先根据勾股定理计算BD的长,再根据时间=路程÷速度进行计算;(2)根据在30千米范围内都要受到影响,先求出从点B到受影响的距离与结束影响的距离,再根据时间=路程÷速度计算,然后求出时间段即可.解:(1)在Rt△ABD中,根据勾股定理,得BD==240km,所以,台风中心经过240÷15=16小时从B移动到D点,答:台风中心经过16小时时间从B移动到D点;(2)如图,∵距台风中心30km的圆形区域内都会受到不同程度的影响,∴BE=BDDE=24030=210km,BC=BD+CD=240+30=270km,∵台风速度为15km/h,∴210÷15=14时,270÷15=18,∵早上6:00接到台风警报,∴6+14=20时,6+18=24时,∴他们要在20时到24时时间段内做预防工作.【点睛】本题考查了勾股定理的运用,此题的难点在于第二问,需要正确理解题意,根据各自的速度计算时间,然后进行正确分析.28.如图,在中,过点A作,BE平分交AC于点E.(1)如图1,已知,,,求BD的长;(2)如图2,点F在线段BC上,连接EF、ED,若,,,求证:.【答案】(1)BD=5;(2)证明见解析【解析】(1)利用勾股定理运算即可;(2)利用角平分线的性质可得到,证出得到,,再通过角的等量代换证出,取的中点,连接,即可证出,从而得到结论.解:(1)∵∴∴∴(2)∵平分∴又∵,∴∴,∴∴∵∴取的中点,连接,如图2所示:则∴∵∴∴∴∴∴【点睛】本题主要考查了勾股定理,全等三角形的性质及判定等,合理做出辅助线灵活证明全等是解题的关键.29.(1)探索:请你利用图(1)验证勾股定理.(2)应用:如图(2),已知在中,,,分别以AC,BC为直径作半圆,半圆的面积分别记为,,则______.(请直接写出结果).(3)拓展:如图(3),MN表示一条铁路,A,B是两个城市,它们到铁路所在直线MN的垂直距离分别为千米,千米,且千米.现要在CD之间建一个中转站O,求O应建在离C点多少千米处,才能使它到A,B两个城市的距离相等.【答案】(1)见解析;(2);(3)O应建在离C点52.5千米处.【解析】(1)此直角梯形的面积由三部分组成,利用直角梯形的面积等于三个直角三角形的面积之和列出方程并整理即可;

(2)根据半圆面积公式以及勾股定理,知S1+S2等于以斜边为直径的半圆面积;

(3)设CO=xkm,则OD=(80x)km,在Rt△AOC和Rt△BOD中,利用勾股定理分别表示出AO和BO的长,根据AO=BO列出方程,求解即可.(1)由面积相等可得,∴,∴,∴.(2),,∴.故答案为:(3)设千米,则千米.∵到A,B两个城市的距离相等,∴,即,由勾股定理,得,解得.即O应建在离C点52.5千米处.【点睛】本题考查了勾股定理的证明和勾股定理的应用,运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解是解题的关键.30.阅读下面的材料,并解决问题:数学家与勾股数组定义:勾股数是指可以构成一个直角三角形三边的一组正整数.一般地,若三角形三边的长都是正整数,且满足,那么数组称为一组勾股数.每一组勾股数都能确定一个边长都为正整数的直角三角形,研究勾股数对研究直角三角形具有重要意义,历史上很多数学家都对勾股数进行了研究:1.我国西周数学家商高在公元前年发现了“勾三,股四,弦五”,数组是世界上发现最早的一组勾股数.2.毕达哥拉斯学派提出勾股数公式为,其中为正整数.(说明:根据这个公式不能写出所有勾股数)3.柏拉图提出的勾股数公式为,其中为大于的整数.(说明:根据这个公式不能写出所有勾股数)4.世界

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论