![2025届鄂尔多斯市重点中学数学高三第一学期期末经典试题含解析_第1页](http://file4.renrendoc.com/view12/M08/23/08/wKhkGWcYIGCAQMTsAAIMVUjcJm8899.jpg)
![2025届鄂尔多斯市重点中学数学高三第一学期期末经典试题含解析_第2页](http://file4.renrendoc.com/view12/M08/23/08/wKhkGWcYIGCAQMTsAAIMVUjcJm88992.jpg)
![2025届鄂尔多斯市重点中学数学高三第一学期期末经典试题含解析_第3页](http://file4.renrendoc.com/view12/M08/23/08/wKhkGWcYIGCAQMTsAAIMVUjcJm88993.jpg)
![2025届鄂尔多斯市重点中学数学高三第一学期期末经典试题含解析_第4页](http://file4.renrendoc.com/view12/M08/23/08/wKhkGWcYIGCAQMTsAAIMVUjcJm88994.jpg)
![2025届鄂尔多斯市重点中学数学高三第一学期期末经典试题含解析_第5页](http://file4.renrendoc.com/view12/M08/23/08/wKhkGWcYIGCAQMTsAAIMVUjcJm88995.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届鄂尔多斯市重点中学数学高三第一学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,为上异于,的任一点,为的中点,若,则等于()A. B. C. D.2.我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金()A.多1斤 B.少1斤 C.多斤 D.少斤3.函数的大致图像为()A. B.C. D.4.已知集合,,则()A. B.C. D.5.函数的图象大致为()A. B.C. D.6.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”意思为有一个人要走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了六天恰好到达目的地,请问第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里7.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则()A. B.3 C. D.28.已知向量,,=(1,),且在方向上的投影为,则等于()A.2 B.1 C. D.09.如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一内角为,若向弦图内随机抛掷500颗米粒(米粒大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为()A.134 B.67 C.182 D.10810.国务院发布《关于进一步调整优化结构、提高教育经费使用效益的意见》中提出,要优先落实教育投入.某研究机构统计了年至年国家财政性教育经费投入情况及其在中的占比数据,并将其绘制成下表,由下表可知下列叙述错误的是()A.随着文化教育重视程度的不断提高,国在财政性教育经费的支出持续增长B.年以来,国家财政性教育经费的支出占比例持续年保持在以上C.从年至年,中国的总值最少增加万亿D.从年到年,国家财政性教育经费的支出增长最多的年份是年11.已知函数为奇函数,则()A. B.1 C.2 D.312.设复数z=,则|z|=()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则函数的极大值为___________.14.已知圆,直线与圆交于两点,,若,则弦的长度的最大值为___________.15.若变量,满足约束条件则的最大值是______.16.在数列中,,,曲线在点处的切线经过点,下列四个结论:①;②;③;④数列是等比数列;其中所有正确结论的编号是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C的中心在坐标原点,其短半轴长为1,一个焦点坐标为,点在椭圆上,点在直线上,且.(1)证明:直线与圆相切;(2)设与椭圆的另一个交点为,当的面积最小时,求的长.18.(12分)已知如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D为AC中点,AEBD于E,延长AE交BC于F,将△ABD沿BD折起,使平面ABD平面BCD,如图2所示。(Ⅰ)求证:AE平面BCD;(Ⅱ)求二面角A-DC-B的余弦值;(Ⅲ)求三棱锥B-AEF与四棱锥A-FEDC的体积的比(只需写出结果,不要求过程).19.(12分)已知椭圆的左焦点坐标为,,分别是椭圆的左,右顶点,是椭圆上异于,的一点,且,所在直线斜率之积为.(1)求椭圆的方程;(2)过点作两条直线,分别交椭圆于,两点(异于点).当直线,的斜率之和为定值时,直线是否恒过定点?若是,求出定点坐标;若不是,请说明理.20.(12分)已知函数,.(1)求曲线在点处的切线方程;(2)求函数的极小值;(3)求函数的零点个数.21.(12分)在平面直角坐标系中,已知抛物线C:()的焦点F在直线上,平行于x轴的两条直线,分别交抛物线C于A,B两点,交该抛物线的准线于D,E两点.(1)求抛物线C的方程;(2)若F在线段上,P是的中点,证明:.22.(10分)如图,在平面直角坐标系中,已知圆C:,椭圆E:()的右顶点A在圆C上,右准线与圆C相切.(1)求椭圆E的方程;(2)设过点A的直线l与圆C相交于另一点M,与椭圆E相交于另一点N.当时,求直线l的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据题意,用表示出与,求出的值即可.【详解】解:根据题意,设,则,又,,,故选:A.【点睛】本题主要考查了平面向量基本定理的应用,关键是要找到一组合适的基底表示向量,是基础题.2、C【解析】设这十等人所得黄金的重量从大到小依次组成等差数列则由等差数列的性质得,故选C3、D【解析】
通过取特殊值逐项排除即可得到正确结果.【详解】函数的定义域为,当时,,排除B和C;当时,,排除A.故选:D.【点睛】本题考查图象的判断,取特殊值排除选项是基本手段,属中档题.4、C【解析】
求出集合,计算出和,即可得出结论.【详解】,,,.故选:C.【点睛】本题考查交集和并集的计算,考查计算能力,属于基础题.5、A【解析】
用偶函数的图象关于轴对称排除,用排除,用排除.故只能选.【详解】因为,所以函数为偶函数,图象关于轴对称,故可以排除;因为,故排除,因为由图象知,排除.故选:A【点睛】本题考查了根据函数的性质,辨析函数的图像,排除法,属于中档题.6、B【解析】
人每天走的路程构成公比为的等比数列,设此人第一天走的路程为,计算,代入得到答案.【详解】由题意可知此人每天走的路程构成公比为的等比数列,设此人第一天走的路程为,则,解得,从而可得,故.故选:.【点睛】本题考查了等比数列的应用,意在考查学生的计算能力和应用能力.7、D【解析】
根据抛物线的定义求得,由此求得的长.【详解】过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【点睛】本小题主要考查抛物线的定义,考查数形结合的数学思想方法,属于基础题.8、B【解析】
先求出,再利用投影公式求解即可.【详解】解:由已知得,由在方向上的投影为,得,则.故答案为:B.【点睛】本题考查向量的几何意义,考查投影公式的应用,是基础题.9、B【解析】
根据几何概型的概率公式求出对应面积之比即可得到结论.【详解】解:设大正方形的边长为1,则小直角三角形的边长为,
则小正方形的边长为,小正方形的面积,
则落在小正方形(阴影)内的米粒数大约为,
故选:B.【点睛】本题主要考查几何概型的概率的应用,求出对应的面积之比是解决本题的关键.10、C【解析】
观察图表,判断四个选项是否正确.【详解】由表易知、、项均正确,年中国为万亿元,年中国为万亿元,则从年至年,中国的总值大约增加万亿,故C项错误.【点睛】本题考查统计图表,正确认识图表是解题基础.11、B【解析】
根据整体的奇偶性和部分的奇偶性,判断出的值.【详解】依题意是奇函数.而为奇函数,为偶函数,所以为偶函数,故,也即,化简得,所以.故选:B【点睛】本小题主要考查根据函数的奇偶性求参数值,属于基础题.12、D【解析】
先用复数的除法运算将复数化简,然后用模长公式求模长.【详解】解:z====﹣﹣,则|z|====.故选:D.【点睛】本题考查复数的基本概念和基本运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
对函数求导,通过赋值,求得,再对函数单调性进行分析,求得极大值.【详解】,故解得,,令,解得函数在单调递增,在单调递减,故的极大值为故答案为:.【点睛】本题考查函数极值的求解,难点是要通过赋值,求出未知量.14、【解析】
取的中点为M,由可得,可得M在上,当最小时,弦的长才最大.【详解】设为的中点,,即,即,,.设,则,得.所以,.故答案为:【点睛】本题考查直线与圆的位置关系的综合应用,考查学生的逻辑推理、数形结合的思想,是一道有一定难度的题.15、9【解析】
做出满足条件的可行域,根据图形,即可求出的最大值.【详解】做出不等式组表示的可行域,如图阴影部分所示,目标函数过点时取得最大值,联立,解得,即,所以最大值为9.故答案为:9.【点睛】本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.16、①③④【解析】
先利用导数求得曲线在点处的切线方程,由此求得与的递推关系式,进而证得数列是等比数列,由此判断出四个结论中正确的结论编号.【详解】∵,∴曲线在点处的切线方程为,则.∵,∴,则是首项为1,公比为的等比数列,从而,,.故所有正确结论的编号是①③④.故答案为:①③④【点睛】本小题主要考查曲线的切线方程的求法,考查根据递推关系式证明等比数列,考查等比数列通项公式和前项和公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】
(1)分斜率为0,斜率不存在,斜率不为0三种情况讨论,设的方程为,可求解得到,,可得到的距离为1,即得证;(2)表示的面积为,利用均值不等式,即得解.【详解】(1)由题意,椭圆的焦点在x轴上,且,所以.所以椭圆的方程为.由点在直线上,且知的斜率必定存在,当的斜率为0时,,,于是,到的距离为1,直线与圆相切.当的斜率不为0时,设的方程为,与联立得,所以,,从而.而,故的方程为,而在上,故,从而,于是.此时,到的距离为1,直线与圆相切.综上,直线与圆相切.(2)由(1)知,的面积为,上式中,当且仅当等号成立,所以面积的最小值为1.此时,点在椭圆的长轴端点,为.不妨设为长轴左端点,则直线的方程为,代入椭圆的方程解得,即,,所以.【点睛】本题考查了直线和椭圆综合,考查了直线和圆的位置关系判断,面积的最值问题,考查了学生综合分析,数学运算能力,属于较难题.18、(Ⅰ)证明见解析;(Ⅱ);(Ⅲ)1:5【解析】
(Ⅰ)由平面ABD⊥平面BCD,交线为BD,AE⊥BD于E,能证明AE⊥平面BCD;(Ⅱ)以E为坐标原点,分别以EF、ED、EA所在直线为x轴,y轴,z轴,建立空间直角坐标系E-xyz,利用向量法求出二面角A-DC-B的余弦值;(Ⅲ)利用体积公式分别求出三棱锥B-AEF与四棱锥A-FEDC的体积,再作比写出答案即可.【详解】(Ⅰ)证明:∵平面ABD⊥平面BCD,交线为BD,又在△ABD中,AE⊥BD于E,AE⊂平面ABD,∴AE⊥平面BCD.(Ⅱ)由(1)知AE⊥平面BCD,∴AE⊥EF,由题意知EF⊥BD,又AE⊥BD,如图,以E为坐标原点,分别以EF、ED、EA所在直线为x轴,y轴,z轴,
建立空间直角坐标系E-xyz,设AB=BD=DC=AD=2,
则BE=ED=1,∴AE=,BC=2,BF=,则E(0,0,0),D(0,1,0),B(0,-1,0),A(0,0,),
F(,0,0),C(,2,0),,,由AE⊥平面BCD知平面BCD的一个法向量为,设平面ADC的一个法向量,则,取x=1,得,∴,∴二面角A-DC-B的平面角为锐角,故余弦值为.
(Ⅲ)三棱锥B-AEF与四棱锥A-FEDC的体积的比为:1:5.【点睛】本题考查线面垂直的证明、几何体体积计算、二面角有关的立体几何综合题,属于中等题.19、(1)(2)直线过定点【解析】
(1),再由,解方程组即可;(2)设,,由,得,由直线MN的方程与椭圆方程联立得到根与系数的关系,代入计算即可.【详解】(1)由题意知:,又,且解得,,∴椭圆方程为,(2)当直线的斜率存在时,设其方程为,设,,由,得.则,(*)由,得,整理可得(*)代入得,整理可得,又,∴,即,∴直线过点当直线的斜率不存在时,设直线的方程为,,,其中,∴,由,得,所以∴当直线的斜率不存在时,直线也过定点综上所述,直线过定点.【点睛】本题考查求椭圆的标准方程以及直线与椭圆位置关系中的定点问题,在处理直线与椭圆的位置关系的大题时,一般要利用根与系数的关系来求解,本题是一道中档题.20、(1);(2)极小值;(3)函数的零点个数为.【解析】
(1)求出和的值,利用点斜式可得出所求切线的方程;(2)利用导数分析函数的单调性,进而可得出该函数的极小值;(3)由当时,以及,结合函数在区间上的单调性可得出函数的零点个数.【详解】(1)因为,所以.所以,.所以曲线在点处的切线为;(2)因为,令,得或.列表如下:0极大值极小值所以,函数的单调递增区间为和,单调递减区间为,所以,当时,函数有极小值;(3)当时,,且.由(2)可知,函数在上单调递增,所以函数的零点个数为.【点睛】本题考查利用导数求函数的切线方程、极值以及利用导数研究函数的零点问题,考查分析问题和解决问题的能力,属于中等题.21、(1);(2)见解析【解析】
(1)根据抛物线的焦点在直线上,可求得的值,从而求得抛物线的方程;(2)法一:设直线,的方程分别为和且,,,可得,,,的坐标,进而可得直线的方程,根据在直线上,可得,再分别求得,,即可得证;法二:设,,则,根据直线的斜率不为0,设出直线的方程为,联立直线和抛物线的方程,结合韦达定理,分别求出,,化简,即可得证.【详解】(1)抛物线C的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生活用纸设计新趋势创新驱动的消费者体验升级
- 生态保护与零碳公园规划的融合实践
- 现代服务业的绿色发展路径探索
- 2024年五年级英语下册 Unit 7 Chinese festivals第6课时说课稿 译林牛津版
- 2024年秋七年级历史上册 第14课 沟通中外文明的“丝绸之路”说课稿 新人教版
- Unit 3 My friends Read and write(说课稿)-2024-2025学年人教PEP版英语四年级上册
- 3 我不拖拉 第一课时(说课稿)2023-2024学年统编版道德与法治一年级下册
- 2024年四年级英语上册 Module 1 Unit 2 It's at the station说课稿 外研版(三起)
- 2024年四年级英语下册 Unit 11 Do you have a ticket第2课时说课稿 湘少版
- 2024-2025学年新教材高中语文 第六单元 14.2 变形记(节选)(2)说课稿 部编版必修下册
- 健康管理-理论知识复习测试卷含答案
- 成人脑室外引流护理-中华护理学会团体 标准
- JGJ106-建筑基桩检测技术规范
- 高技能公共实训基地建设方案
- 市第一人民医院“十四五”发展规划(2020-2025)
- 2024年湖北孝达交通投资有限公司招聘笔试冲刺题(带答案解析)
- 四年级上册竖式计算100题及答案
- 小学英语跨学科案例设计
- 初中作业设计教师培训
- JTGT F20-2015 公路路面基层施工技术细则
- 高考满分作文常见结构
评论
0/150
提交评论