2025届吉林省白山市高二上数学期末监测模拟试题含解析_第1页
2025届吉林省白山市高二上数学期末监测模拟试题含解析_第2页
2025届吉林省白山市高二上数学期末监测模拟试题含解析_第3页
2025届吉林省白山市高二上数学期末监测模拟试题含解析_第4页
2025届吉林省白山市高二上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届吉林省白山市高二上数学期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知x是上的一个随机的实数,则使x满足的概率为()A. B.C. D.2.已知空间向量,,则()A. B.C. D.3.已知向量,.若,则()A. B.C. D.4.命题“,使”的否定是()A.,有 B.,有C.,使 D.,使5.“,”的否定是A., B.,C., D.,6.1202年,意大利数学家斐波那契出版了他的《算盘全书》.他在书中收录了一些有意思的问题,其中有一个关于兔子繁殖的问题:如果1对兔子每月生1对小兔子(一雌一雄),而每1对小兔子出生后的第3个月里,又能生1对小兔子,假定在不发生死亡的情况下,如果用Fn表示第n个月的兔子的总对数,则有(n>2),.设数列{an}满足:an=,则数列{an}的前36项和为()A.11 B.12C.13 D.187.设、分别为具有公共焦点与的椭圆和双曲线的离心率,为两曲线的一个公共点,且满足,则的值为()A. B.C. D.8.已知,则下列说法中一定正确的是()A. B.C. D.9.已知函数在处取得极值,则()A. B.C. D.10.复数的共轭复数是A. B.C. D.11.已知四面体,所有棱长均为2,点E,F分别为棱AB,CD的中点,则()A.1 B.2C.-1 D.-212.设α,β是两个不同的平面,m,n是两条不重合的直线,下列命题中为真命题的是()A如果,,n∥β,那么B.如果,,,那么α∥βC.如果m∥n,,,那么α∥βD.如果m∥n,,,那么二、填空题:本题共4小题,每小题5分,共20分。13.已知函数.(1)若的解集为,求a,b的值;(2)若,a,b均正实数,求的最小值;(3)若,当时,若不等式恒成立,求实数b的值.14.关于曲线C:1,有如下结论:①曲线C关于原点对称;②曲线C关于直线x±y=0对称;③曲线C是封闭图形,且封闭图形的面积大于2π;④曲线C不是封闭图形,且它与圆x2+y2=2无公共点;⑤曲线C与曲线D:|x|+|y|=2有4个公共点,这4点构成正方形其中正确结论的个数是_____15.已知分别是平面α,β,γ的法向量,则α,β,γ三个平面中互相垂直的有________对16.若数列满足,则称为“追梦数列”.已知数列为“追梦数列”,且,则数列的通项公式__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥P-ABCD中,PA平面ABCD,,∠BAD=120o,AB=AD=2,点M在线段PD上,且DM=2MP,平面(1)求证:平面MAC平面PAD;(2)若PA=6,求平面PAB和平面MAC所成锐二面角的余弦值18.(12分)如图,四边形为矩形,,且平面平面.(1)若,分别是,的中点,求证:平面;(2)若是等边三角形,求平面与平面夹角的余弦值.19.(12分)已知椭圆C:的左右焦点分别为,,点P是椭圆C上位于第二象限的任一点,直线l是的外角平分线,过左焦点作l的垂线,垂足为N,延长交直线于点M,(其中O为坐标原点),椭圆C的离心率为(1)求椭圆C的标准方程;(2)过右焦点的直线交椭圆C于A,B两点,点T在线段AB上,且,点B关于原点的对称点为R,求面积的取值范围.20.(12分)某企业为响应“安全生产”号召,将全部生产设备按设备安全系数分为A,两个等级,其中等设备安全系数低于A等设备.企业定时对生产设备进行检修,并将部分等设备更新成A等设备.据统计,2020年底该企业A等设备量已占全体设备总量的30%.从2021年开始,企业决定加大更新力度,预计今后每年将16%的等设备更新成A等设备,与此同时,4%的A等设备由于设备老化将降级成等设备.(1)在这种更新制度下,在将来的某一年该企业的A等设备占全体设备的比例能否超过80%?请说明理由;(2)至少在哪一年底,该企业的A等设备占全体设备的比例超过60%.(参考数据:,,)21.(12分)同时掷两颗质地均匀的骰子(六个面分别标有数字1,2,3,4,5,6的正方体)(1)求两颗骰子向上的点数相等的概率;(2)求两颗骰子向上的点数不相等,且一个点数是另一个点数的整数倍的概率22.(10分)已知直线经过点,且满足下列条件,求相应的方程.(1)过点;(2)与直线垂直.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先解不等式得到的范围,再利用几何概型的概率公式进行求解.【详解】由得,即,所以使x满足的概率为故选:B.2、C【解析】直接利用向量的坐标运算法则求解即可【详解】因为,,所以,故选:C3、A【解析】根据给定条件利用空间向量平行的坐标表示直接计算作答.【详解】向量,,因,则,解得,所以,B,D都不正确;,C不正确,A正确.故选:A4、B【解析】根据特称命题的否定是全称命题即可得正确答案【详解】存在量词命题的否定,只需把存在量词改成全称量词,并把后面的结论否定,所以“,使”的否定为“,有”,故选:B.5、D【解析】通过命题的否定的形式进行判断【详解】因为全称命题的否定是特称命题,故“,”的否定是“,”.故选D.【点睛】本题考查全称命题的否定,属基础题.6、B【解析】由奇数+奇数=偶数,奇数+偶数=奇数可知,数列{Fn}中F3,F6,F9,F12,,F3n为偶数,其余项都为奇数,再根据an=,即可求出数列{an}的前36项和【详解】由奇数+奇数=偶数,奇数+偶数=奇数可知,数列{Fn}中F3,F6,F9,F12,,F3n为偶数,其余项都为奇数,∴前36项共有12项为偶数,∴数列{an}的前36项和为12×1+24×0=12.故选:B7、A【解析】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设,利用椭圆和双曲线的定义可得出,再利用勾股定理可求得结果.【详解】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设,由椭圆和双曲线的定义可得,所以,,设,因为,则,由勾股定理得,即,整理得,故.故选:A.8、B【解析】AD选项,举出反例即可;BC选项,利用不等式的基本性质进行判断.【详解】当,时,满足,此时,故A错误;因,所以,,,B正确;因为,所以,,故,C错误;当,时,满足,,,所以,D错误.故选:B9、B【解析】根据极值点处导函数为零可求解.【详解】因为,则,由题意可知.经检验满足题意故选:B10、B【解析】因,故其共轭复数.应选B.考点:复数的概念及运算.11、D【解析】在四面体中,取定一组基底向量,表示出,,再借助空间向量数量积计算作答.【详解】四面体所有棱长均为2,则向量不共面,两两夹角都为,则,因点E,F分别为棱AB,CD的中点,则,,,所以.故选:D12、C【解析】AB.利用两平面的位置关系判断;CD.利用面面平行的判定定理判断;【详解】A.如果,,n∥β,那么α,β相交或平行;故错误;B.如果,,,那么α,β垂直,故错误;C.如果m∥n,,则,又,那么α∥β,故C正确;D错误,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、(1),;(2);(3)【解析】(1)根据韦达定理解求得答案;(2)根据题意,,进而化简,然后结合基本不等式解得答案;(3)讨论,和x=2三种情况,进而分参转化为求函数的最值问题,最后求得答案.【小问1详解】由已知可知方程的两个根为,2,由韦达定理得,,故,.【小问2详解】由题意得,,所以,当且仅当时取等号.【小问3详解】若,,不等式恒成立.当时,,此时,即对于恒成立,单调递减,此时,,所以;当时,,此时,即即对于恒成立,在单调递减,此时,所以;当x=2时,.综上所述:.14、4【解析】直接利用曲线的性质,对称性的应用可判断①②;求出可判断③;联立方程,解方程组可判断④⑤的结论【详解】对于①,将方程中的x换为﹣x,y换为﹣y,方程不变,曲线C关于原点对称,故①正确;对于②,将方程中的x换为﹣y,把y换成﹣x,方程不变,曲线C关于直线x±y=0对称,故②正确;对于③,由方程得,故曲线C不是封闭图形,故③错误;对于④,曲线C:,不是封闭图形,联立整理可得:,方程无解,故④正确;对于⑤,曲线C与曲线D:由于,解得,根据对称性,可得公共点为,故曲线C与曲线D有四个交点,这4点构成正方形,故⑤正确故答案为:415、0【解析】计算每两个向量的数量积,判断该两个向量是否垂直,可得答案.【详解】因为,,.所以中任意两个向量都不垂直,即α,β,γ中任意两个平面都不垂直故答案为:0.16、##【解析】根据题意,由“追梦数列”的定义可得“追梦数列”是公比为的等比数列,进而可得若数列为“追梦数列”,则为公比为3的等比数列,进而由等比数列的通项公式可得答案【详解】根据题意,“追梦数列”满足,即,则数列是公比为的等比数列.若数列为“追梦数列”,则.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)连接BD交AC于点E,连接ME,由所给条件推理出CA⊥AD,进而得CA⊥平面PAD,证得结论(2)首先以A为原点,射线AC,AD,AP分别为x,y,z轴非负半轴建立空间直角坐标系,再利用向量法求解二面角即可【小问1详解】(1)连接BD交AC于点E,连接ME,如图所示:∵平面MAC,PB平面PBD,平面PBD平面MAC=ME,∴,,则BC=1,而AB=2,,,∴AC2+BC2=4=AB2,∠ACB=90º,∠CAD=90º,即CA⊥AD,又PA⊥平面ABCD,CA平面ABCD,∴PA⊥CA,又PAAD=A,∴CA⊥平面PAD,而CA平面MAC,∴平面MAC⊥平面PAD【小问2详解】(2)如图所示:以A为原点,射线AC,AD,AP分别为x,y,z轴非负半轴建立空间直角坐标系,则,∴,设平面PAB和平面MAC的一个法向量分别为,平面PAB和平面MAC所成锐二面角为,∴,,∴.18、(1)证明见解析(2)【解析】(1)通过构造平行四边形,在平面中找到即可证明(2)建立直角坐标系,通过两个面的法向量夹角的余弦值求出面面夹角的余弦值【小问1详解】证明:设为的中点,连接,,因为,分别为,的中点.所以且,又,为的中点,所以,且,所以四边形是平行四边形,所以,又平面,平面,所以平面;【小问2详解】取的中点,连接,,则,∵平面平面,平面平面,∴平面,∵是等边三角形,为中点,∴,分别以,,所在直线为,,轴建立如图所示的空间直角坐标系,则,,,,,,,,.设为平面的一个法向量,则有即取可取,设为平面的一个法向量,则有即可取,所以,设平面与平面的夹角为,则,∴,即平面与平面夹角的余弦值为.19、(1)(2)【解析】(1)根据题意可得到的值,结合椭圆的离心率,即可求得b,求得答案;(2)由可得,进一步推得,于是设直线方程和椭圆方程联立,利用根与系数的关系,求得弦长,表示出三角形AOB的面积,利用换元法结合二次函数的性质求其范围.【小问1详解】由题意可知:为的中点,为的中点,为的中位线,,,又,故,即,,又,,,椭圆的标准方程为;【小问2详解】由题意可知,,,①当过的直线与轴垂直时,,,②当过的直线不与轴垂直时,可设,,直线方程为,联立,可得:.,,,由弦长公式可知,到距离为,故,令,则原式变为,令,原式变为当时,故,由①②可知.【点睛】本题考查了椭圆方程的求解,以及直线和椭圆相交时的三角形的面积问题,考查学生的计算能力和数学素养,解答的关键是计算三角形面积时要理清运算的思路,准确计算.20、(1)A等设备量不可能超过生产设备总量的80%,理由见解析;(2)在2025年底实现A等设备量超过生产设备总量的60%.【解析】(1)根据题意表示出2020年开始,经过年后A等设备量占总设备量的百分比为,求出,根据的范围进行判断;(2)令>即可求解.【小问1详解】记该企业全部生产设备总量为“1”,2020年开始,经过年后A等设备量占总设备量的百分比为,则经过1年即2021年底该企业A等设备量,,可得,又所以数列是以为首项,公比为的等比数列,可得,所以,显然有,所以A等设备量不可能超过生产设备总量的80%.【小问2详解】由,得.因为单调递减,又,,所以在2025年底实现A等设备量超过生产设备总量的60%.21、(1);(2).【解析】(1)求出同时掷两颗骰子的基本事件数、及骰子向上的点数相等的基本事件数,应用古典概型的概率求法,求概率即可.(2)列举出两颗骰子向上的点数不相等,且一个点数是另一个点数的倍数的基本事件,应用古典概型的概率求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论