版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省孝感市安陆市第一中学高考适应性月考卷(六)数学试题试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数的导函数,且满足,若在中,,则()A. B. C. D.2.已知复数满足,(为虚数单位),则()A. B. C. D.33.如图,在正四棱柱中,,分别为的中点,异面直线与所成角的余弦值为,则()A.直线与直线异面,且 B.直线与直线共面,且C.直线与直线异面,且 D.直线与直线共面,且4.设为非零实数,且,则()A. B. C. D.5.已知复数,则的虚部为()A.-1 B. C.1 D.6.正三棱柱中,,是的中点,则异面直线与所成的角为()A. B. C. D.7.如图,平面与平面相交于,,,点,点,则下列叙述错误的是()A.直线与异面B.过只有唯一平面与平行C.过点只能作唯一平面与垂直D.过一定能作一平面与垂直8.设直线过点,且与圆:相切于点,那么()A. B.3 C. D.19.的展开式中,项的系数为()A.-23 B.17 C.20 D.6310.函数(),当时,的值域为,则的范围为()A. B. C. D.11.函数的最大值为,最小正周期为,则有序数对为()A. B. C. D.12.已知为等比数列,,,则()A.9 B.-9 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.直线是圆:与圆:的公切线,并且分别与轴正半轴,轴正半轴相交于,两点,则的面积为_________14.,则f(f(2))的值为____________.15.已知在等差数列中,,,前n项和为,则________.16.有编号分别为1,2,3,4,5的5个红球和5个黑球,从中随机取出4个,则取出球的编号互不相同的概率为_______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和为,且满足.(1)求数列的通项公式;(2)若,,且数列前项和为,求的取值范围.18.(12分)已知曲线的参数方程为为参数,曲线的参数方程为为参数).(1)求与的普通方程;(2)若与相交于,两点,且,求的值.19.(12分)如图,四棱锥中,平面平面,底面为梯形.,且与均为正三角形.为的中点为重心,与相交于点.(1)求证:平面;(2)求三棱锥的体积.20.(12分)已知a>0,b>0,a+b=2.(Ⅰ)求的最小值;(Ⅱ)证明:21.(12分)已知函数,.(1)当时,讨论函数的单调性;(2)若,当时,函数,求函数的最小值.22.(10分)已知椭圆的左焦点为F,上顶点为A,直线AF与直线垂直,垂足为B,且点A是线段BF的中点.(I)求椭圆C的方程;(II)若M,N分别为椭圆C的左,右顶点,P是椭圆C上位于第一象限的一点,直线MP与直线交于点Q,且,求点P的坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据的结构形式,设,求导,则,在上是增函数,再根据在中,,得到,,利用余弦函数的单调性,得到,再利用的单调性求解.【详解】设,所以,因为当时,,即,所以,在上是增函数,在中,因为,所以,,因为,且,所以,即,所以,即故选:D【点睛】本题主要考查导数与函数的单调性,还考查了运算求解的能力,属于中档题.2、A【解析】,故,故选A.3、B【解析】
连接,,,,由正四棱柱的特征可知,再由平面的基本性质可知,直线与直线共面.,同理易得,由异面直线所成的角的定义可知,异面直线与所成角为,然后再利用余弦定理求解.【详解】如图所示:连接,,,,由正方体的特征得,所以直线与直线共面.由正四棱柱的特征得,所以异面直线与所成角为.设,则,则,,,由余弦定理,得.故选:B【点睛】本题主要考查异面直线的定义及所成的角和平面的基本性质,还考查了推理论证和运算求解的能力,属于中档题.4、C【解析】
取,计算知错误,根据不等式性质知正确,得到答案.【详解】,故,,故正确;取,计算知错误;故选:.【点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.5、A【解析】
分子分母同乘分母的共轭复数即可.【详解】,故的虚部为.故选:A.【点睛】本题考查复数的除法运算,考查学生运算能力,是一道容易题.6、C【解析】
取中点,连接,,根据正棱柱的结构性质,得出//,则即为异面直线与所成角,求出,即可得出结果.【详解】解:如图,取中点,连接,,由于正三棱柱,则底面,而底面,所以,由正三棱柱的性质可知,为等边三角形,所以,且,所以平面,而平面,则,则//,,∴即为异面直线与所成角,设,则,,,则,∴.故选:C.【点睛】本题考查通过几何法求异面直线的夹角,考查计算能力.7、D【解析】
根据异面直线的判定定理、定义和性质,结合线面垂直的关系,对选项中的命题判断.【详解】A.假设直线与共面,则A,D,B,C共面,则AB,CD共面,与,矛盾,故正确.B.根据异面直线的性质知,过只有唯一平面与平行,故正确.C.根据过一点有且只有一个平面与已知直线垂直知,故正确.D.根据异面直线的性质知,过不一定能作一平面与垂直,故错误.故选:D【点睛】本题主要考查异面直线的定义,性质以及线面关系,还考查了理解辨析的能力,属于中档题.8、B【解析】
过点的直线与圆:相切于点,可得.因此,即可得出.【详解】由圆:配方为,,半径.∵过点的直线与圆:相切于点,∴;∴;故选:B.【点睛】本小题主要考查向量数量积的计算,考查圆的方程,属于基础题.9、B【解析】
根据二项式展开式的通项公式,结合乘法分配律,求得的系数.【详解】的展开式的通项公式为.则①出,则出,该项为:;②出,则出,该项为:;③出,则出,该项为:;综上所述:合并后的项的系数为17.故选:B【点睛】本小题考查二项式定理及展开式系数的求解方法等基础知识,考查理解能力,计算能力,分类讨论和应用意识.10、B【解析】
首先由,可得的范围,结合函数的值域和正弦函数的图像,可求的关于实数的不等式,解不等式即可求得范围.【详解】因为,所以,若值域为,所以只需,∴.故选:B【点睛】本题主要考查三角函数的值域,熟悉正弦函数的单调性和特殊角的三角函数值是解题的关键,侧重考查数学抽象和数学运算的核心素养.11、B【解析】函数(为辅助角)∴函数的最大值为,最小正周期为故选B12、C【解析】
根据等比数列的下标和性质可求出,便可得出等比数列的公比,再根据等比数列的性质即可求出.【详解】∵,∴,又,可解得或设等比数列的公比为,则当时,,∴;当时,,∴.故选:C.【点睛】本题主要考查等比数列的性质应用,意在考查学生的数学运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据题意画出图形,设,利用三角形相似求得的值,代入三角形的面积公式,即可求解.【详解】如图所示,设,由与相似,可得,解得,再由与相似,可得,解得,由三角形的面积公式,可得的面积为.故答案为:.【点睛】本题主要考查了直线与圆的位置关系的应用,以及三角形相似的应用,着重考查了数形结合思想,以及推理与运算能力,属于基础题.14、1【解析】
先求f(1),再根据f(1)值所在区间求f(f(1)).【详解】由题意,f(1)=log3(11–1)=1,故f(f(1))=f(1)=1×e1–1=1,故答案为:1.【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.15、39【解析】
设等差数列公差为d,首项为,再利用基本量法列式求解公差与首项,进而求得即可.【详解】设等差数列公差为d,首项为,根据题意可得,解得,所以.故答案为:39【点睛】本题考查等差数列的基本量计算以及前n项和的公式,属于基础题.16、【解析】试题分析:从编号分别为1,1,3,4,5的5个红球和5个黑球,从中随机取出4个,有种不同的结果,由于是随机取出的,所以每个结果出现的可能性是相等的;设事件为“取出球的编号互不相同”,则事件包含了个基本事件,所以.考点:1.计数原理;1.古典概型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)由,可求,然后由时,可得,根据等比数列的通项可求(2)由,而,利用裂项相消法可求.【详解】(1)当时,,解得,当时,①②②①得,即,数列是以2为首项,2为公比的等比数列,;(2)∴,∴,,.【点睛】本题考查递推公式在数列的通项求解中的应用,等比数列的通项公式、裂项求和方法,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.18、(1),(2)0【解析】
(1)分别把两曲线参数方程中的参数消去,即可得到普通方程;(2)把直线的参数方程代入的普通方程,化为关于的一元二次方程,再由根与系数的关系及此时的几何意义求解.【详解】(1)由曲线的参数方程为为参数),消去参数,可得;由曲线的参数方程为为参数),消去参数,可得,即.(2)把为参数)代入,得.,..解得:,即,满足△..【点睛】本题考查参数方程化普通方程,特别是直线参数方程中参数的几何意义的应用,是中档题.19、(1)见解析(2)【解析】
(1)第(1)问,连交于,连接.证明//,即证平面.(2)第(2)问,主要是利用体积变换,,求得三棱锥的体积.【详解】(1)方法一:连交于,连接.由梯形,且,知又为的中点,为的重心,∴在中,,故//.又平面,平面,∴平面.方法二:过作交PD于N,过F作FM||AD交CD于M,连接MN,G为△PAD的重心,又ABCD为梯形,AB||CD,又由所作GN||AD,FM||AD,得//,所以GNMF为平行四边形.因为GF||MN,(2)方法一:由平面平面,与均为正三角形,为的中点∴,,得平面,且由(1)知//平面,∴又由梯形ABCD,AB||CD,且,知又为正三角形,得,∴,得∴三棱锥的体积为.方法二:由平面平面,与均为正三角形,为的中点∴,,得平面,且由,∴而又为正三角形,得,得.∴,∴三棱锥的体积为.20、(Ⅰ)最小值为;(Ⅱ)见解析【解析】
(1)根据题意构造平均值不等式,结合均值不等式可得结果;(2)利用分析法证明,结合常用不等式和均值不等式即可证明.【详解】(Ⅰ)则当且仅当,即,时,所以的最小值为.(Ⅱ)要证明:,只需证:,即证明:,由,也即证明:.因为,所以当且仅当时,有,即,当时等号成立.所以【点睛】本题考查均值不等式,分析法证明不等式,审清题意,仔细计算,属中档题.21、(1)见解析(2)的最小值为【解析】
(1)由题可得函数的定义域为,,当时,,令,可得;令,可得,所以函数在上单调递增,在上单调递减;当时,令,可得;令,可得或,所以函数在,上单调递增,在上单调递减;当时,恒成立,所以函数在上单调递增.综上,当时,函数在上单调递增,在上单调递减;当时,函数在,上单调递增,在上单调递减;当时,函数在上单调递增.(2)方法一:当时,,,设,,则,所以函数在上单调递减,所以,当且仅当时取等号.当时,设,则,所以,设,,则,所以函数在上单调递减,且,,所以存在,使得,所以当时,;当时,,所以函数在上单调递增,在上单调递减,因为,,所以,所以,当且仅当时取等号.所以当时,函数取得最小值,且,故函数的最小值为.方法二:当时,,,则,令,,则,所以函数在上单调递增,又,所以存在,使得,所以函数在上单调递减,在上单调递增,因为,所以当时,恒成立,所以当时,恒成立,所以函数在上单调递减,所以函数的最小值为.22、(I).(II)【解析】
(I)写出坐标,利用直线与直线垂直,得到.求出点的坐标代入,可得到的一个关系式,由此求得和的值,进而求得椭圆方程.(II)设出点的坐标,由此写出直线的方程,从而求得点的坐标,代入,化简可求得点的坐标.【详解】(I)∵椭圆的左焦点,上顶点,直线AF与直线垂直∴直线AF的斜率,即①又点A是线段BF的中点∴点的坐标为又点在直线上∴②∴由①②得:∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度导演与编剧合作合同3篇
- 2024年版室内设计及装修费用合同样本版B版
- 2024年美发店品牌合作经营协议
- 2024年水泥建筑材料购销合同样本版B版
- 2024年度新能源汽车充电桩运营权转让合同3篇
- 河北省廊坊市永清县一中等2校2022-2023学年高一3月联考生物试题
- 2024孕妇离婚子女监护权与财产分割协议范本3篇
- 2024年度离职员工竞业禁止及保密责任履行协议3篇
- 2024年美容院租赁协议样本
- 2024年度房地产代持协议书模板3篇
- 眼视光学理论与方法智慧树知到答案2024年温州医科大学
- 2022-2023学年广东省广州市花都区六年级(上)期末英语试卷(含答案)
- 公司合伙人合作协议书范本
- 2024年中考地理复习 人教版全四册重点知识提纲
- 电梯季度维护保养项目表
- GB/T 44188-2024危险货物爆炸品无约束包装件试验方法
- 机动车检测站质量手册(根据补充技术要求修订)
- 2024年(学习强国)思想政治理论知识考试题库与答案
- 基于LoRa通信的智能家居系统设计及研究
- YYT 0741-2009 数字化医用X射线摄影系统 专用技术条件
- 《大数据分析技术》课程标准
评论
0/150
提交评论