高考真题与模拟训练专题练习专题06三角函数(原卷版+解析)_第1页
高考真题与模拟训练专题练习专题06三角函数(原卷版+解析)_第2页
高考真题与模拟训练专题练习专题06三角函数(原卷版+解析)_第3页
高考真题与模拟训练专题练习专题06三角函数(原卷版+解析)_第4页
高考真题与模拟训练专题练习专题06三角函数(原卷版+解析)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题6三角函数第一部分近3年高考真题一、选择题1.(2021·北京高考真题)函数,试判断函数的奇偶性及最大值()A.奇函数,最大值为2 B.偶函数,最大值为2C.奇函数,最大值为 D.偶函数,最大值为2.(2021·全国高考真题)若,则()A. B. C. D.3.(2021·全国高考真题(文))函数的最小正周期和最大值分别是()A.和 B.和2 C.和 D.和24.(2021·全国高考真题(文))若,则()A. B. C. D.5.(2021·全国高考真题(理))把函数图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数的图像,则()A. B.C. D.6.(2021·全国高考真题(文))()A. B. C. D.7.(2021·全国高考真题)下列区间中,函数单调递增的区间是()A. B. C. D.8.(2020·天津高考真题)已知函数.给出下列结论:①的最小正周期为;②是的最大值;③把函数的图象上所有点向左平移个单位长度,可得到函数的图象.其中所有正确结论的序号是()A.① B.①③ C.②③ D.①②③9.(2020·北京高考真题)2020年3月14日是全球首个国际圆周率日(Day).历史上,求圆周率的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数充分大时,计算单位圆的内接正边形的周长和外切正边形(各边均与圆相切的正边形)的周长,将它们的算术平均数作为的近似值.按照阿尔·卡西的方法,的近似值的表达式是().A. B.C. D.10.(2020·全国高考真题(理))设函数在的图像大致如下图,则f(x)的最小正周期为()A. B.C. D.11.如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,是锐角,大小为β.图中阴影区域的面积的最大值为A.4β+4cosβ B.4β+4sinβ C.2β+2cosβ D.2β+2sinβ12.设函数=sin()(>0),已知在有且仅有5个零点,下述四个结论:①在()有且仅有3个极大值点②在()有且仅有2个极小值点③在()单调递增④的取值范围是[)其中所有正确结论的编号是()A.①④ B.②③ C.①②③ D.①③④13.已知函数是奇函数,将的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为.若的最小正周期为,且,则()A. B. C. D.14.函数f(x)=在[—π,π]的图像大致为()A. B.C. D.15.(2020·海南高考真题)下图是函数y=sin(ωx+φ)的部分图像,则sin(ωx+φ)=()A. B. C. D.二、填空题16.(2021·北京高考真题)若点与点关于轴对称,写出一个符合题意的___.17.(2021·全国高考真题(文))已知函数的部分图像如图所示,则_______________.18.(2021·全国高考真题(理))已知函数的部分图像如图所示,则满足条件的最小正整数x为________.19.(2020·浙江高考真题)已知圆锥的侧面积(单位:)为2π,且它的侧面积展开图是一个半圆,则这个圆锥的底面半径(单位:)是_______.20.(2020·海南高考真题)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC=,,EF=12cm,DE=2cm,A到直线DE和EF的距离均为7cm,圆孔半径为1cm,则图中阴影部分的面积为________cm2.21.(2020·全国高考真题(理))关于函数f(x)=有如下四个命题:①f(x)的图象关于y轴对称.②f(x)的图象关于原点对称.③f(x)的图象关于直线x=对称.④f(x)的最小值为2.其中所有真命题的序号是__________.三、解答题22.(2021·浙江高考真题)设函数.(1)求函数的最小正周期;(2)求函数在上的最大值.23.(2020·浙江高考真题)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且.(I)求角B的大小;(II)求cosA+cosB+cosC的取值范围.24.(2020·全国高考真题(文))△ABC的内角A,B,C的对边分别为a,b,c,已知.(1)求A;(2)若,证明:△ABC是直角三角形.第二部分模拟训练1.古希腊的数学家毕达哥拉斯通过研究正五边形和正十边形的作图,发现了黄金分割率,黄金分割率的值也可以用表示.若实数满足,则()A. B. C. D.2.已知函数,的部分图象如图所示,的图象过,两点,将的图象向左平移个单位得到的图象,则函数在上的最小值为()A. B. C. D.3.如图所示,扇形的半径为,圆心角为,是扇形弧上的动点,四边形是扇形的内接矩形,则的最大值是()A. B. C. D.4.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.图中的为矩形,弧为一段圆弧,其尺寸如图所示,则截面(图中阴影部分)的面积为()A. B.C. D.5.定义在上的函数满足:,函数,若,则______.6.已知函数,.下列有关的说法中,正确的是______(填写你认为正确的序号).①不等式的解集为或;②在区间上有四个零点;③的图象关于直线对称;④的最大值为;⑤的最小值为;7.已知函数.(1)求函数在区间上的值域;(2)若方程在区间上至少有两个不同的解,求的取值范围.专题6三角函数第一部分近3年高考真题一、选择题1.(2021·北京高考真题)函数,试判断函数的奇偶性及最大值()A.奇函数,最大值为2 B.偶函数,最大值为2C.奇函数,最大值为 D.偶函数,最大值为【答案】D【解析】由题意,,所以该函数为偶函数,又,所以当时,取最大值.故选:D.2.(2021·全国高考真题)若,则()A. B. C. D.【答案】C【解析】将式子进行齐次化处理得:.故选:C.3.(2021·全国高考真题(文))函数的最小正周期和最大值分别是()A.和 B.和2 C.和 D.和2【答案】C【解析】由题,,所以的最小正周期为,最大值为.故选:C.4.(2021·全国高考真题(文))若,则()A. B. C. D.【答案】A【解析】,,,,解得,,.故选:A.5.(2021·全国高考真题(理))把函数图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数的图像,则()A. B.C. D.【答案】B【解析】解法一:函数图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到的图象,再把所得曲线向右平移个单位长度,应当得到的图象,根据已知得到了函数的图象,所以,令,则,所以,所以;解法二:由已知的函数逆向变换,第一步:向左平移个单位长度,得到的图象,第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到的图象,即为的图象,所以.故选:B.6.(2021·全国高考真题(文))()A. B. C. D.【答案】D【解析】由题意,.故选:D.7.(2021·全国高考真题)下列区间中,函数单调递增的区间是()A. B. C. D.【答案】A【解析】因为函数的单调递增区间为,对于函数,由,解得,取,可得函数的一个单调递增区间为,则,,A选项满足条件,B不满足条件;取,可得函数的一个单调递增区间为,且,,CD选项均不满足条件.故选:A.8.(2020·天津高考真题)已知函数.给出下列结论:①的最小正周期为;②是的最大值;③把函数的图象上所有点向左平移个单位长度,可得到函数的图象.其中所有正确结论的序号是()A.① B.①③ C.②③ D.①②③【答案】B【解析】因为,所以周期,故①正确;,故②不正确;将函数的图象上所有点向左平移个单位长度,得到的图象,故③正确.故选:B.9.(2020·北京高考真题)2020年3月14日是全球首个国际圆周率日(Day).历史上,求圆周率的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数充分大时,计算单位圆的内接正边形的周长和外切正边形(各边均与圆相切的正边形)的周长,将它们的算术平均数作为的近似值.按照阿尔·卡西的方法,的近似值的表达式是().A. B.C. D.【答案】A【解析】单位圆内接正边形的每条边所对应的圆周角为,每条边长为,所以,单位圆的内接正边形的周长为,单位圆的外切正边形的每条边长为,其周长为,,则.故选:A.10.(2020·全国高考真题(理))设函数在的图像大致如下图,则f(x)的最小正周期为()A. B.C. D.【答案】C【解析】由图可得:函数图象过点,将它代入函数可得:又是函数图象与轴负半轴的第一个交点,所以,解得:所以函数的最小正周期为故选:C11.如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,是锐角,大小为β.图中阴影区域的面积的最大值为A.4β+4cosβ B.4β+4sinβ C.2β+2cosβ D.2β+2sinβ【答案】B【解析】观察图象可知,当P为弧AB的中点时,阴影部分的面积S取最大值,此时∠BOP=∠AOP=π-β,面积S的最大值为+S△POB+S△POA=4β+.故选B.12.设函数=sin()(>0),已知在有且仅有5个零点,下述四个结论:①在()有且仅有3个极大值点②在()有且仅有2个极小值点③在()单调递增④的取值范围是[)其中所有正确结论的编号是()A.①④ B.②③ C.①②③ D.①③④【答案】D【解析】当时,,∵f(x)在有且仅有5个零点,∴,∴,故④正确,由,知时,令时取得极大值,①正确;极小值点不确定,可能是2个也可能是3个,②不正确;因此由选项可知只需判断③是否正确即可得到答案,当时,,若f(x)在单调递增,则,即,∵,故③正确.故选D.13.已知函数是奇函数,将的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为.若的最小正周期为,且,则()A. B. C. D.【答案】C【解析】因为为奇函数,∴;又,,又∴,故选C.14.函数f(x)=在[—π,π]的图像大致为()A. B.C. D.【答案】D【解析】由,得是奇函数,其图象关于原点对称.又.故选D.15.(2020·海南高考真题)下图是函数y=sin(ωx+φ)的部分图像,则sin(ωx+φ)=()A. B. C. D.【答案】BC【解析】由函数图像可知:,则,所以不选A,当时,,解得:,即函数的解析式为:.而故选:BC.二、填空题16.(2021·北京高考真题)若点与点关于轴对称,写出一个符合题意的___.【答案】(满足即可)【解析】与关于轴对称,即关于轴对称,,则,当时,可取的一个值为.故答案为:(满足即可).17.(2021·全国高考真题(文))已知函数的部分图像如图所示,则_______________.【答案】【解析】由题意可得:,当时,,令可得:,据此有:.故答案为:.18.(2021·全国高考真题(理))已知函数的部分图像如图所示,则满足条件的最小正整数x为________.【答案】2【解析】由图可知,即,所以;由五点法可得,即;所以.因为,;所以由可得或;因为,所以,方法一:结合图形可知,最小正整数应该满足,即,解得,令,可得,可得的最小正整数为2.方法二:结合图形可知,最小正整数应该满足,又,符合题意,可得的最小正整数为2.故答案为:2.19.(2020·浙江高考真题)已知圆锥的侧面积(单位:)为2π,且它的侧面积展开图是一个半圆,则这个圆锥的底面半径(单位:)是_______.【答案】【解析】设圆锥底面半径为,母线长为,则,解得.故答案为:20.(2020·海南高考真题)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC=,,EF=12cm,DE=2cm,A到直线DE和EF的距离均为7cm,圆孔半径为1cm,则图中阴影部分的面积为________cm2.【答案】【解析】设,由题意,,所以,因为,所以,因为,所以,因为与圆弧相切于点,所以,即为等腰直角三角形;在直角中,,,因为,所以,解得;等腰直角的面积为;扇形的面积,所以阴影部分的面积为.故答案为:.21.(2020·全国高考真题(理))关于函数f(x)=有如下四个命题:①f(x)的图象关于y轴对称.②f(x)的图象关于原点对称.③f(x)的图象关于直线x=对称.④f(x)的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】对于命题①,,,则,所以,函数的图象不关于轴对称,命题①错误;对于命题②,函数的定义域为,定义域关于原点对称,,所以,函数的图象关于原点对称,命题②正确;对于命题③,,,则,所以,函数的图象关于直线对称,命题③正确;对于命题④,当时,,则,命题④错误.故答案为:②③.三、解答题22.(2021·浙江高考真题)设函数.(1)求函数的最小正周期;(2)求函数在上的最大值.【答案】(1);(2).【解析】(1)由辅助角公式得,则,所以该函数的最小正周期;(2)由题意,,由可得,所以当即时,函数取最大值.23.(2020·浙江高考真题)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且.(I)求角B的大小;(II)求cosA+cosB+cosC的取值范围.【答案】(I);(II)【解析】(I)由结合正弦定理可得:△ABC为锐角三角形,故.(II)结合(1)的结论有:.由可得:,,则,.即的取值范围是.24.(2020·全国高考真题(文))△ABC的内角A,B,C的对边分别为a,b,c,已知.(1)求A;(2)若,证明:△ABC是直角三角形.【答案】(1);(2)证明见解析【解析】(1)因为,所以,即,解得,又,所以;(2)因为,所以,即①,又②,将②代入①得,,即,而,解得,所以,故,即是直角三角形.第二部分模拟训练1.古希腊的数学家毕达哥拉斯通过研究正五边形和正十边形的作图,发现了黄金分割率,黄金分割率的值也可以用表示.若实数满足,则()A. B. C. D.【答案】A【解析】根据题中的条件可得.故选:A.2.已知函数,的部分图象如图所示,的图象过,两点,将的图象向左平移个单位得到的图象,则函数在上的最小值为()A. B. C. D.【答案】A【解析】由图象知,,∴,则,∴,将点的坐标代入得,,即,又,∴,则,将的图象向左平移个单位得到函数,∴在上的最小值为,故选:A3.如图所示,扇形的半径为,圆心角为,是扇形弧上的动点,四边形是扇形的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论