版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题12角的计算(综合题)易错点拨易错点拨知识点01:角的比较与运算1.角的比较角的大小比较与线段的大小比较相类似,方法有两种.方法1:.先用量角器量出角的度数,然后比较它们的大小.方法2:.把其中的一个角移到另一个角上作比较.如比较∠AOB和∠A′O′B′的大小:如下图,由图(1)可得∠AOB<∠A′O′B′;由图(2)可得∠AOB=∠A′O′B′;由图(3)可得∠AOB>∠A′O′B′.2.角的和、差运算如图所示,∠AOB是∠1与∠2的和,记作:∠AOB=∠1+∠2;∠1是∠AOB与∠2的差,记作:∠1=∠AOB∠2.细节剖析:(1)用量角器量角和画角的一般步骤:①(角的顶点与量角器的中心对齐);②(一边与刻度尺上的零度线重合);③(读出另一边所在线的度数).(2)利用三角板除了可以做出外,根据角的和、差关系,还可以画出的角.3.角平分线从一个角的顶点出发,把这个角分成的射线,叫做这个角的平分线.如图所示,OC是∠AOB的角平分线,∠AOB=2∠AOC=2∠BOC,∠AOC=∠BOC=∠AOB.细节剖析:由角平分线的概念产生的合情推理其思维框架与线段中点的思维框架一样.知识点02:方位角在航行和测绘等工作中,经常要用到表示方向的角.例如,图中射线OA的方向是射线OB的方向是.这里的表示方向的角,就叫做方位角.细节剖析:(1)4个方向不需要用角度来表示.(2)方位角必须以方向作为“基准”,“北偏东60°”一般不说成.(3)在同一问题中观察点可能不止一个,在不同的观测点都要画出表示方向的“十字线”,确定其观察点的正东、正西、正南、正北的方向.(4)图中的点O是观测点,所有方向线(射线)都必须以O为端点.知识点03:钟表上有关夹角问题钟表中共有12个大格,把周角、每个大格对应的角,分针1分钟转,时针每小时转,时针1分钟转,利用这些关系,可帮助我们解决钟表中角度的计算问题.易错题专训易错题专训一.选择题1.(2021秋•东莞市期末)已知∠AOB=55°,∠BOC=20°,则∠AOC的度数为()A.75° B.35° C.75°或35° D.无法确定2.(2021秋•南开区期末)如图,∠AOB=α,OA1、OB1分别是∠AOM和∠MOB的平分线,OA2、OB2分别是∠A1OM和∠MOB1的平分线,OA3、OB3分别是∠A2OM和∠MOB2的平分线,…,OAn,OBn分别是∠An﹣1OM和∠MOBn﹣1的平分线,则∠AnOBn的度数是()A. B. C. D.3.(2020秋•东西湖区期末)将一张正方形纸片ABCD按如图所示的方式折叠,CE、CF为折痕,点B、D折叠后的对应点分别为B'、D',若∠ECF=21°,则∠B'CD'的度数为()A.35° B.42° C.45° D.48°4.(2020秋•永嘉县校级期末)α,β都是钝角,有四名同学分别计算(α+β),却得到了四个不同的结果,分别为26°,50°,72°,90°,老师判作业时发现其中有正确的结果,那么计算正确的结果是()A.26° B.50° C.72° D.90°5.(2021春•高青县期中)已知∠AOB=70°,以O端点作射线OC,使∠AOC=28°,则∠BOC的度数为()A.42° B.98° C.42°或98° D.82°6.(2021秋•河北区校级期末)一副三角板ABC、DBE,如图1放置(∠D=30°、∠BAC=45°),将三角板DBE绕点B逆时针旋转一定角度,如图2所示,且0°<∠CBE<90°,则下列结论中正确的是()①∠DBC+∠ABE的角度恒为105°;②在旋转过程中,若BM平分∠DBA,BN平分∠EBC,∠MBN的角度恒为定值;③在旋转过程中,两块三角板的边所在直线夹角成90°的次数为2次;④在图1的情况下,作∠DBF=∠EBF,则AB平分∠DBF.A.① B.② C.①②④ D.①②③④7.(2022春•垦利区期末)如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF.将∠BEF对折,点B落在直线EF上的点B'处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A'处,得折痕EN.则∠NEM的度数为()A.105° B.90° C.60° D.不能确定二.填空题8.(2021秋•礼泉县期末)如图,∠AOB:∠BOC:∠COD=2:3:4,射线OM、ON分别平分∠AOB与∠COD,又∠MON=90°,则∠AOB为度.9.(2021•凉山州模拟)已知射线OA,从O点再引射线OB,OC,使∠AOB=67°31′,∠BOC=48°39′,则∠AOC的度数为10.(2020春•浦东新区期末)如图,∠AOB=80°,∠BOC=20°,OD平分∠AOC,则∠AOD等于度.11.(2021秋•金牛区期末)如图,长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.∠FEG=20°,则∠MEN=.12.(2021秋•秦淮区期末)一副三角板AOB与COD如图1摆放,且∠A=∠C=90°,∠AOB=60°,∠COD=45°,ON平分∠COB,OM平分∠AOD.当三角板COD绕O点顺时针旋转(从图1到图2).设图1、图2中的∠NOM的度数分别为α,β,α+β=度.13.(2021秋•市中区期末)点O为直线l上一点,射线OA、OB均与直线l重合,将射线OB绕点O逆时针旋转α(0≤α≤90°),过点O作射线OC、OD、OM、OM,使得∠BOC=90°,∠COD=2α,∠COM=∠AOC,∠CON=∠COD(OM在∠AOC内部,ON在∠COD内部),当∠MON=α时,则α=.三.解答题14.(2021秋•绵阳期末)如图,点O是直线AB上一点,OM,ON在直线AB的异侧,且∠MON=90°,OE平分∠MOB,OF平分∠AON.(1)若∠BOM=150°,求∠BOE和∠NOF的度数;(2)设∠AOF=θ,用含θ的式子表示∠MOE.15.(2022春•广饶县期末)直线AB外有一定点C,O是直线AB上的一个动点.(1)如图1所示,当点O从左向右运动时,观察∠α的变化情况,正确的是.A.逐渐变大B.逐渐变小C.大小不变D.无法确定(2)当点O运动到∠α=140°时,点O运动停止,然后将射线OB绕着点O顺时针旋转到如图2位置,且∠AOC:∠BOC=1:2.①求图2中∠AOC,∠BOC的度数;②在图2的基础上,作射线OM平分∠AOC,在∠BOC内作射线ON,使得∠CON:∠BON=1:3,如图3,求∠MON的度数.16.(2021秋•方城县期末)(1)如图1所示,将两块不同的三角尺(∠A=60°,∠D=30°,∠B=∠E=45°)的直角顶点C叠放在一起.①若∠DCE=25°,则∠ACB=;若∠ACB=130°,则∠DCE=.②猜想∠ACB与∠DCE有何数量关系,并说明理由.(2)如图2所示,若两个相同的三角尺的60°角的顶点A重合在一起,则∠DAB与∠CAE有何数量关系,请说明理由.(3)已知∠AOB=α,∠COD=β(α,β都是锐角),如图3所示,∠AOD与∠BOC有何数量关系,请直接写出结果,不说明理由.17.(2021秋•松滋市期末)(问题)(1)如图①,点C是线段AB上一点,点D,E分别是线段AC,BC的中点,若线段AB=26cm,则线段DE的长为cm.(拓展)(2)在(问题)中,若把条件“如图①,点C是线段AB上一点”改为“如图②,点C是线段AB延长线上一点”,其余条件不变,试求DE的长.(应用)(3)如图③,∠AOB=α,点C在∠AOB内部,射线OM,ON分别平分∠AOC,∠BOC,则∠MON的大小为(用含字母α的式子表示);(4)如图④,在(3)中,若点C在∠AOB外部,且射线OC与射线OB在OA所在直线的同侧,其他条件不变,则(3)中的结论是否成立,若成立,请写出求解过程;若不成立,请说明理由.18.(2021秋•滨海县期末)【阅读理解】射线OC是∠AOB内部的一条射线,若∠COA=∠AOB,则我们称射线OC是射线OA的“友好线”.例如,如图1,∠AOB=60°,∠AOC=∠COD=∠BOD=20°,则∠AOC=∠AOB,称射线OC是射线OA的友好线;同时,由于∠BOD=∠AOB,称射线OD是射线OB的友好线.【知识运用】(1)如图2,∠AOB=120°,射线OM是射线OA的友好线,则∠AOM=°;(2)如图3,∠AOB=180°,射线OC与射线OA重合,并绕点O以每秒2°的速度逆时针旋转,射线OD与射线OB重合,并绕点O以每秒3°的速度顺时针旋转,当射线OD与射线OA重合时,运动停止;①是否存在某个时刻t(秒),使得∠COD的度数是40°,若存在,求出t的值,若不存在,请说明理由;②当t为多少秒时,射线OC、OD、OA中恰好有一条射线是另一条射线的友好线.(直接写出答案)19.(2021秋•碑林区校级期末)已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1,当∠AOC=40°时,求∠DOE的度数;(2)如图2,OF平分∠BOD,求∠EOF的度数;(3)如图3,∠AOC=36°,此时∠COD绕点O以每秒6°沿逆时针方向旋转t秒(0≤t<60),请直接写出∠AOC和∠DOE之间的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版监管金融监管总局三连发金融监管合规与风险管理咨询合同3篇
- 2025版酒水品牌独家代理权及区域保护合同3篇
- 2025版酒店客房设施更新与智能化改造合同3篇
- 2024年生态保护区水井施工与生态修复合同3篇
- 2024年酒店早餐服务专属承包合同版
- 2024年鱼苗养殖基地建设与鱼苗购销一体化合同3篇
- 2025版卫浴产品研发与创新基金投资协议3篇
- 2025年度环保设备研发与推广服务合作协议2篇
- 二零二五公车私用管理及调度协议3篇
- 2025年度智能化办公空间租赁合同范本2篇
- 2023-2024学年人教版七年级下册地理知识清单
- 中国土地制度智慧树知到期末考试答案章节答案2024年浙江大学
- 手术物品准备完善率
- 2024年西藏自治区中考地理真题(原卷版)
- 成人高考JAVA程序设计(考试复习资料)
- MOOC 电路理论-华中科技大学 中国大学慕课答案
- 物流园区运营管理承包合同样本
- 国家职业技术技能标准 6-02-06-10 茶叶加工工 2024年版
- 2024年四川成都市金牛国投人力资源服务有限公司招聘笔试参考题库含答案解析
- 脑栓塞患者的护理
- 2024-2024新课标全国卷1-地理-(附答案)
评论
0/150
提交评论