版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题13勾股定理之蚂蚁行程模型综合应用(3大类型)解题思路解题思路几何体中最短路径基本模型如下:基本思路:将立体图形展开成平面图形,利用两点之间线段最短确定最短路线,构造直角三角形,利用勾股定理求解【典例分析】【典例1】如图,有一个圆柱,它的高等于16cm,底面半径等于4cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的最短路程是多少?.(π取3)【解答】解:将此圆柱展成平面图得:∵有一圆柱,它的高等于16cm,底面半径等于4cm(π≈3),∴AC=16cm,BC=BB′=×8π=12(cm),∴AB==10(cm).∴AB==20cm.答:需要爬行的最短路程是20cm.【变式11】如图,一圆柱体的底面周长为10cm,高AB为12cm,BC是直径,一只蚂蚁从点A出发沿着圆柱的表面爬行到点C的最短路程为()A.17cm B.13cm C.12cm D.14cm【答案】B【解答】解:如图所示:由于圆柱体的底面周长为10cm,则AD=10×=5(cm).又因为CD=AB=12cm,所以AC=(cm).故蚂蚁从点A出发沿着圆柱体的表面爬行到点C的最短路程是13cm.故选:B.【变式12】如图,一圆柱体的底面周长为24cm,高BD为5cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的侧面爬行到点C的最短路程大约是()A.6cm B.12cm C.13cm D.16cm【答案】C【解答】解:将圆柱体展开,连接DC,圆柱体的底面周长为24cm,则DE=12cm,根据两点之间线段最短,CD==13(cm).而走D﹣B﹣C的距离更短,∵BD=5,BC=,∴BD+BC≈13.故选:C.【典例2】(2021春•望城区期末)如图,长方体的长为15cm,宽为10cm,高为20cm,点B距离C点5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,则蚂蚁爬行的最短距离是cm.【答案】25【解答】解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=10+5=15,AD=20,在直角三角形ABD中,根据勾股定理得:∴AB=;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB=;只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如第3个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴AC=CD+AD=20+10=30,在直角三角形ABC中,根据勾股定理得:∴AB=;∵25<5,∴蚂蚁爬行的最短距离是25.故答案为:25【变式21】正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从A点爬行到M点的最短距离为()A. B. C.5 D.2+【答案】A【解答】解:展开正方体的点M所在的面,∵BC的中点为M,所以MC=BC=1,在直角三角形中AM==.故选:A.【变式22】有一长、宽、高分别是5cm,4cm,3cm的长方体木块,一只蚂蚁要从长方体的一个顶点A处沿长方体的表面爬到长方体上和A相对的顶点B处,则需要爬行的最短路径长为()A.5cm B.cm C.4cm D.3cm【答案】B【解答】解:因为平面展开图不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面、右面,由勾股定理得AB2=(5+4)2+32=90;(2)展开前面、上面,由勾股定理得AB2=(3+4)2+52=74;(3)展开左面、上面,由勾股定理得AB2=(3+5)2+42=80;所以最短路径长为cm.故选:B.【典例3】如图是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米,A,B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是米.【答案】2.5【解答】解:三级台阶平面展开图为长方形,长为2,宽为(0.2+0.3)×3,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x2=22+[(0.2+0.3)×3]2=2.52,解得x=2.5.【变式3】如图是一个三级台阶,它的每一级的长、宽、高分别为7寸、5寸和3寸,A和B是这个台阶的两个相对端点,A点上有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线长度是寸.【答案】25【解答】解:将台阶展开矩形,线段AB恰好是直角三角形的斜边,两直角边长分别为24寸,7寸,由勾股定理得AB==25寸.【夯实基础】1.长方体的长为15,宽为10,高为20,点B在棱上与点C的距离为5,如图,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,则需要爬行的最短距离是()A. B. C.25 D.【答案】C【解答】解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=10+5=15,AD=20,在直角三角形ABD中,根据勾股定理得:∴AB===25;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB===5;只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如第3个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴AC=CD+AD=20+10=30,在直角三角形ABC中,根据勾股定理得:∴AB===5;∵25<5<5,∴蚂蚁爬行的最短距离是25.故选:C.2.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草,则他们仅仅少走了步路.(假设2步为1米)【答案】4【解答】解:由勾股定理,得路长==5(m),少走(3+4﹣5)×2=4步,故答案为:4.如图,一座桥横跨一河,桥长40m,一艘小船自桥北头出发,向正南方驶去,因水流原因到达南岸后,发现已偏离桥南头9m,则小船实际行驶的距离为m.【答案】41【解答】解:根据题意知,∠ABC=90°,AB=40m,BC=9m,在直角△ABC中,AC2=AB2+BC2,所以实际行驶的路程为AC==41(m).故答案为:41.4.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是cm.【答案】15【解答】解:由题意可得,当展开前面和右面时,最短路线长是:==15(cm);当展开前面和上面时,最短路线长是:==7(cm);当展开左面和上面时,最短路线长是:=(cm);∵15<7<,∴一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是15cm,故答案为:15.5.如图一只蚂蚁从长为5cm、宽为3cm,高是4cm的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长是cm.【答案】【解答】解:因为平面展开图不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB2=(5+3)2+42=80;(2)展开前面上面由勾股定理得AB2=(4+3)2+52=74;(3)展开左面上面由勾股定理得AB2=(5+4)2+32=90.所以最短路径的长为AB=(cm).故答案为:.6.如图是棱长为4cm的立方体木块,一只蚂蚁现在A点,若在B点处有一块糖,它想尽快吃到这块糖,则蚂蚁沿正方体表面爬行的最短路程是cm.【答案】【解答】解:将点A和点B所在的面展开为矩形,AB为矩形对角线的长,∵矩形的长和宽分别为8cm和4cm,∴AB==cm.故蚂蚁沿正方体的最短路程是cm.7.如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用秒钟.【答案】2.5【解答】解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB==cm;(2)展开底面右面由勾股定理得AB==5cm;所以最短路径长为5cm,用时最少:5÷2=2.5秒.8.如图是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米,A,B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是米.【答案】2.5【解答】解:三级台阶平面展开图为长方形,长为2,宽为(0.2+0.3)×3,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x2=22+[(0.2+0.3)×3]2=2.52,解得x=2.5.9.如图,有一个圆柱形仓库,它的高为10m,底面半径为4m,在圆柱形仓库下底面的A处有一只蚂蚁,它想吃相对一侧中点B处的食物,蚂蚁爬行的速度是50cm/min,那么蚂蚁吃到食物最少需要min.(π取3)【答案】26【解答】解:首先展开圆柱的半个侧面,即是矩形.此时AB所在的三角形的直角边分别是5m,12m.根据勾股定理求得AB=13m=1300cm,故蚂蚁吃到食物最少需要的时间是1300÷50=26min.10.如图,一只蚂蚁沿着图示的路线从圆柱高AA1的端点A到达A1,若圆柱底面半径为,高为5,则蚂蚁爬行的最短距离为.【答案】13【解答】解:因为圆柱底面圆的周长为2π×=12,高为5,所以将侧面展开为一长为12,宽为5的矩形,根据勾股定理,对角线长为=13.故蚂蚁爬行的最短距离为13.11.一个长方体盒子,它的长是12d
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一的变调练习题
- 二零二五年度重型吊车安全责任及运输合同3篇
- 压疮的预防及护理课件
- 射箭游戏-数学
- 2024年浙江宇翔职业技术学院高职单招职业适应性测试历年参考题库含答案解析
- 2024年济源职业技术学院高职单招职业适应性测试历年参考题库含答案解析
- 《科幻小说赏析与写作》 课件 -第三章 “太空歌剧”的探索与开拓-《2001太空漫游》
- 2024年河南工业贸易职业学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 二零二五年租赁权转让及配套设备协议范本3篇
- 2024年沧州职业技术学院高职单招语文历年参考题库含答案解析
- TCABEE 063-2024 建筑光储直柔系统变换器 通 用技术要求
- 【9化期末】合肥市庐阳区2023-2024学年九年级上学期期末化学试题
- 高一下学期生物人教版必修二:3.4 基因通常是有遗传效应的DNA片段课件
- 雅礼中学2024-2025学年初三创新人才选拔数学试题及答案
- 下属企业考核报告范文
- 采购合同评审表-模板
- 冬季高空作业施工方案
- 2024-2025学年人教版九年级数学上学期复习:圆的综合解答题 压轴题型专项训练(30道题)
- 修车补胎合同范例
- 高中学生交通安全课件
- 高速收费站文明服务培训
评论
0/150
提交评论