版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、选择题1.(0分)代数式x2﹣的正确解释是()A.x与y的倒数的差的平方 B.x的平方与y的倒数的差C.x的平方与y的差的倒数 D.x与y的差的平方的倒数B解析:B【分析】根据代数式的意义,可得答案.【详解】解:代数式x2﹣的正确解释是x的平方与y的倒数的差,故选:B.【点睛】本题考查了代数式,理解题意(代数式的意义)是解题关键.2.(0分)若与的和是单项式,则=()A. B.0 C.3 D.6C解析:C【分析】要使与的和是单项式,则与为同类项;根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a、b的方程组;结合上述提示,解出a、b的值便不难计算出a+b的值.【详解】解:根据题意可得:,解得:,所以,故选:.【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.(0分)已知与是同类项,则的值是()A.2 B.3 C.4 D.5B解析:B【分析】根据同类项的概念可得关于n的一元一次方程,求解方程即可得到n的值.【详解】解:∵与是同类项,∴n+1=4,解得,n=3,故选:B.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.4.(0分)如图所示,直线、相交于点,“阿基米德曲线”从点开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在()A.射线上 B.射线上 C.射线上 D.射线上C解析:C【分析】由图可观察出负数在OC或OD射线上,在OC射线上的数为-4的奇数倍,在OD射线上的数为-4的偶数倍,即可得出答案.【详解】解:∵由图可观察出负数在OC或OD射线上,排除选项A,B,∵在射线OC上的数符合:┈在射线OD上的数符合:┈∵,505为奇数,因此标记为“-2020”的点在射线OC上.故答案为:C.【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.5.(0分)下列式子中,是整式的是()A. B. C.1÷x D.A解析:A【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.【详解】解:A.是整式,故正确;B.是分式,故错误;C.1÷x是分式,故错误;D.是分式,故错误.故选A.【点睛】本题主要考查了整式,关键是掌握整式的概念.6.(0分)把一个大正方形和四个相同的小正方形按图①、②两种方式摆放,则大正方形的周长与小正方形的周长的差是()A. B. C. D.D解析:D【分析】利用大正方形的周长减去4个小正方形的周长即可求解.【详解】解:根据图示可得:大正方形的边长为,小正方形边长为,∴大正方形的周长与小正方形的周长的差是:×4-×4=a+3b.故选;D.【点睛】本题考查了列代数式,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.7.(0分)下列去括号正确的是()A.B.C.D.C解析:C【分析】依据去括号法则计算即可判断正误.【详解】A.,故此选项错误;B.,故此选项错误;C.,此选项正确;D.,故此选项错误;故选:C.【点睛】此题考查整式的化简,注意去括号法则.8.(0分)张师傅下岗后做起了小生意,第一次进货时,他以每件a元的价格购进了20件甲种小商品,以每件b元的价格购进了30件乙种小商品(a>b).根据市场行情,他将这两种小商品都以元的价格出售.在这次买卖中,张师傅的盈亏状况为()A.赚了(25a+25b)元 B.亏了(20a+30b)元C.赚了(5a-5b)元 D.亏了(5a-5b)元C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(=10(b-a)+15(a-b)=10b-10a+15a-15b=5a-5b,则这次买卖中,张师傅赚5(a-b)元.故选C.【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.9.(0分)某养殖场2018年底的生猪出栏价格为每千克元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克()元A. B.C. D.A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a元.故选A.【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.10.(0分)多项式是()A.三次三项式 B.四次二项式 C.三次二项式 D.四次三项式D解析:D【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了.【详解】解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D.【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关二、填空题11.(0分)在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n时,最多可有的交点数m与直线条数n之间的关系式为:m=_____.(用含n的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n条直线相交最多有1+2+3+…+(n-1)=个解析:【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=个交点.即故答案为:.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.12.(0分)观察如图,发现第二个和第三个图形是怎样借助第一个图形得到的,概括其中的规律在第个图形中,它有个黑色六边形,有_______个白色六边形.【分析】发现规律下一个图形是在上一个图形的基础上加上1个黑色六边形和4个白色六边形【详解】解:第一个图形中有6个白色六边形第二个图形有6+4个白色六边形第三个图形有6+4+4个白色六边形根据发现的规解析:【分析】发现规律,下一个图形是在上一个图形的基础上加上1个黑色六边形和4个白色六边形.【详解】解:第一个图形中有6个白色六边形,第二个图形有6+4个白色六边形,第三个图形有6+4+4个白色六边形,根据发现的规律,第n个图形中有6+4(n-1)个白色四边形.故答案是:4n+2.【点睛】本题考查规律的探究,解题的关键是先发现图形之间的规律,再去归纳总结出公式.13.(0分)合并同类项(1)=____________________;(按字母x升幂排列)(2)=_____________________;(按字母x降幂排列)(3)=_____________________;(按字母b降幂排列)【分析】(1)先合并同类项再将多项式按照字母x的次数由小到大重新排列即可;(2)先合并同类项再将多项式按照字母x的次数由大到小重新排列即可;(3)先合并同类项再将多项式按照字母b的次数由大到小重新排解析:【分析】(1)先合并同类项,再将多项式按照字母x的次数由小到大重新排列即可;(2)先合并同类项,再将多项式按照字母x的次数由大到小重新排列即可;(3)先合并同类项,再将多项式按照字母b的次数由大到小重新排列即可.【详解】解:(1);故答案为:;(2)解:;故答案为:;(3)解:;故答案为:.【点睛】此题考查整式的降幂及升幂排列,合并同类项法则,将多项式按照某个字母重新排列时注意该项的次数及符号,利用交换律将多项式重新排列.14.(0分)观察下列各式:,,……,若,则m=_____________9【分析】根据观察可知:将代入即可得出答案【详解】解:……故答案为:【点睛】主要考查了学生的分析总结归纳能力规律型的习题一般是从所给的数据和运算方法进行分析从特殊值的规律上总结出一般性的规律解析:9【分析】根据观察可知:,将代入即可得出答案.【详解】解:,,……,故答案为:.【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.15.(0分)礼堂第一排有个座位,后面每排都比第一排多个座位,则第排座位有________________.【分析】有第1排的座位数看第n排的座位数是在第1排座位数的基础上增加几个1即可【详解】解:∵第一排有个座位∴第2排的座位为a+1第3排的座位数为a+2…第n排座位有(a+n-1)个故答案为:(a+n解析:【分析】有第1排的座位数,看第n排的座位数是在第1排座位数的基础上增加几个1即可.【详解】解:∵第一排有个座位,∴第2排的座位为a+1,第3排的座位数为a+2,…第n排座位有(a+n-1)个.故答案为:(a+n-1).【点睛】考查列代数式;得到第n排的座位数与第1排座位数的关系式的规律是解决本题的关键.16.(0分)有一列数:,1,,,…,依照此规律,则第n个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找解析:.【分析】根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】这列数可以写为,,,,因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n个数为.故答案为:.【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键.17.(0分)已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a、b、c、d.若|a﹣c|=10,|a﹣d|=12,|b﹣d|=9,则|b﹣c|=___.7【分析】根据数轴和题目中的式子可以求得c﹣b的值从而可以求得|b﹣c|的值【详解】∵|a﹣c|=10|a﹣d|=12|b﹣d|=9∴c﹣a=10d﹣a=12d﹣b=9∴(c﹣a)﹣(d﹣a)+(d解析:7【分析】根据数轴和题目中的式子可以求得c﹣b的值,从而可以求得|b﹣c|的值.【详解】∵|a﹣c|=10,|a﹣d|=12,|b﹣d|=9,∴c﹣a=10,d﹣a=12,d﹣b=9,∴(c﹣a)﹣(d﹣a)+(d﹣b)=c﹣a﹣d+a+d﹣b=c﹣b=10﹣12+9=7.∵|b﹣c|=c﹣b,∴|b﹣c|=7.故答案为:7.【点睛】本题考查了数轴、绝对值以及整式的加减,解答本题的关键是明确数轴的特点,可以将绝对值符号去掉,求出相应的式子的值.18.(0分)多项式按的降幂排列是______。【分析】根据多项式的项的概念和降幂排列的概念可知多项式的项为:将各项按x的指数由大到小排列为:【详解】把多项式按x的指数降幂排列后为故答案为:【点睛】本题考查了多项式的项的概念和降幂排列的概念(1)解析:【分析】根据多项式的项的概念和降幂排列的概念,可知多项式的项为:,将各项按x的指数由大到小排列为:.【详解】把多项式按x的指数降幂排列后为.故答案为:【点睛】本题考查了多项式的项的概念和降幂排列的概念.(1)多项式中的每个单项式叫做多项式的项;(2)一个多项式的各项按照某个字母指数从大到小或者从小到大的顺序排列,叫做降幂或升幂排列.在解题时要注意灵活运用.19.(0分)“的3倍与的的和”用代数式表示为______.【分析】a的3倍表示为3ab的表示为b然后把它们相加即可【详解】根据题意得3a+b;故答案为:3a+b【点睛】本题考查了列代数式:把问题中与数量有关的词语用含有数字字母和运算符号的式子表示出来就是列解析:【分析】a的3倍表示为3a,b的表示为b,然后把它们相加即可.【详解】根据题意,得3a+b;故答案为:3a+b.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;再分清数量关系;规范地书写.20.(0分)如图,大、小两个正方形与正方形并排放在一起,点在边上.已知两个正方形的面积之差为31平方厘米,则四边形的面积是______平方厘米.【分析】设出两个正方形边长分别为ab(a>b)表示正方形面积之差用ab表示四边形的面积进行整体代入即可【详解】解:设两个正方形边长分别为ab(a>b)由已知四边形的面积为:故答案为:【点睛】本题考查解析:【分析】设出两个正方形边长分别为a,b(a>b),表示正方形面积之差,用a、b表示四边形的面积,进行整体代入即可.【详解】解:设两个正方形边长分别为a,b(a>b)由已知四边形的面积为:故答案为:【点睛】本题考查了列代数式和整体代入的相关知识,解答关键是将求值式子进行变式,再应用整体代入解答问题。三、解答题21.(0分)学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当,,求的值”.小明做完后对同桌说:“老师给的条件是多余的,这道题不给的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?解析:-21【分析】首先化简代数式,通过去括号、合并同类项,得出结论即含有b的代数式相加为0,即可说明.【详解】解==当时原式==-21.【点睛】考查整式的化简求值,熟练掌握去括号法则以及合并同类项法则是解题的关键.22.(0分)观察下列单项式-2x,4x2,-8x3,16x4,-32x5,64x6,…(1)分别指出单项式的系数和指数是怎样变化的?(2)写出第10个单项式;(3)写出第n个单项式.解析:(1)见解析;(2)(-2)10x10=1024x10;(3)(-2)nxn.【分析】(1)根据单项式的次数与系数定义得出即可;(2)根据单项式系数与次数的变化得出一般性规律得出第10个单项式;(3)根据单项式系数与次数的变化得出一般性规律,进而得出第n个单项式.【详解】(1)通过观察,系数为:-2,4=(-2)2,-8=(-2)3,16=(-2)4,-32=(-2)5指数分别是:1,2,3,4,5,6(2)第10个单项式为:(-2)10x10=1024x10;(3)第n个单项式为:(-2)nxn.【点睛】本题考查了单项式的系数、次数以及数字变化规律,根据已知得出数字变化规律是解题关键.23.(0分)先化简,再求值:,其中,.解析:,.【分析】先去括号,再合并同类项,再将,代入原式求值即可.【详解】原式,当,时,原式【点睛】本题考查了整式的化简求值问题,掌握整式化简的方法、合并同类项的方法是解题的关键.24.(0分)已知多项式(1)把这个多项式按的降冥重新排列;(2)请指出该多项式的次数,并写出它的二次项和常规项.解析:(1);(2)该多项式的次数为4,二次项是,常数项是.【分析】(1)按照x的指数从大到小的顺序把各项重新排列即可;(2)根据多项式的次数的定义找出次数最高的项即是该多项式的次数,再找出次数是2的项和不含字母的项即可得二次项和常数项.【详解】(1)按的降幂排列为原式.(2)∵中次数最高的项是-5x4,∴该多项式的次数为4,它的二次项是,常数项是.【点睛】本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键.25.(0分)单项式的系数是______,次数是______.佳佳认为此单项式的系数是,次数为6,请问佳佳的答案正确吗?如果不正确,请说明错误的理由,并且把正确的答案写出来.解析:,4.佳佳的答案不正确,此题错将当成是未知数,因而加上了“的次数”.正确的答案为系数是,次数是4.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】佳佳的答案不正确,此题错将当成是未知数,因而加上了“的次数”.故正确的答案为系数是,次数是4.【点睛】考查了单项式,解答此题关键是构造单项式的系数和次数,把一个单项式分解成数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度版权购买合同:某影视公司购买某导演的电影剧本版权2篇
- 常州市2024年度二手房买卖过户费用合同
- 二零二四年版权许可协议:音乐作品的批量使用与分发
- 2024年度电子商务店铺客户服务合作协议2篇
- 电视剧导演聘请及薪酬协议(二零二四年度)
- 2024年度旅游服务合同担保协议
- 2024年度石油钻采设备电焊维修合同2篇
- 大学勤工助学协议书(2篇)
- 和叛逆孩子协议书(2篇)
- 二零二四年度技术开发合作:人工智能语音识别系统研发与授权合同
- 4公民的基本权利和义务 第一课时(教学设计)-统编版道德与法治六年级上册
- 2024江西南昌市政公用集团招聘58人(高频重点提升专题训练)共500题附带答案详解
- 留置胃管课件
- 承包学校印刷合同协议书
- 上海,家用充电桩安装申请流程
- 2024年中国出版集团研究出版社有限公司招聘笔试冲刺题(带答案解析)
- 《鼻饲法操作规范》课件
- 全册思维导图高中地理人教版
- 2024年贵州省中考化学试卷真题(含答案及解析)
- 2023年广东省普通高中数学学业水平合格性考试真题卷含答案
- 人工智能知识竞赛题库及答案(500题)
评论
0/150
提交评论