重庆市主城四区2025届高二数学第一学期期末复习检测模拟试题含解析_第1页
重庆市主城四区2025届高二数学第一学期期末复习检测模拟试题含解析_第2页
重庆市主城四区2025届高二数学第一学期期末复习检测模拟试题含解析_第3页
重庆市主城四区2025届高二数学第一学期期末复习检测模拟试题含解析_第4页
重庆市主城四区2025届高二数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市主城四区2025届高二数学第一学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过抛物线C:y2=4x的焦点F分别作斜率为k1、k2的直线l1、l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,若|k1·k2|=2,则|AB|+|DE|的最小值为()A.10 B.12C.14 D.162.复数,则对应的点所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限3.三个实数构成一个等比数列,则圆锥曲线的离心率为()A. B.C.或 D.或4.将数列中的各项依次按第一个括号1个数,第二个括号2个数,第三个括号4个数,第四个括号8个数,第五个括号16个数,…,进行排列,,,…,则以下结论中正确的是()A.第10个括号内的第一个数为1025 B.2021在第11个括号内C.前10个括号内一共有1025个数 D.第10个括号内的数字之和5.已知等比数列的公比为,则“是递增数列”的一个充分条件是()A. B.C. D.6.若方程表示焦点在y轴上的双曲线,则实数m的取值范围为()A. B.C. D.且7.抛物线的焦点到直线的距离为,则()A.1 B.2C. D.48.若数列满足,则数列的通项公式为()A. B.C. D.9.在正方体中,与直线和都垂直,则直线与的关系是()A.异面 B.平行C.垂直不相交 D.垂直且相交10.已知等比数列满足,,则()A.21 B.42C.63 D.8411.给出下列四个说法,其中正确的是A.命题“若,则”的否命题是“若,则”B.“”是“双曲线的离心率大于”的充要条件C.命题“,”的否定是“,”D.命题“在中,若,则是锐角三角形”的逆否命题是假命题12.将点的极坐标化成直角坐标是(

)A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线上一点到准线的距离为,到直线:的距离为,则的最小值为__________14.已知椭圆C:,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则_________.15.已知双曲线的左、右焦点分别为,,O为坐标原点,点M是双曲线左支上的一点,若,,则双曲线的离心率是____________16.已知数列{an}满足an+2=an+1-an(n∈N*),且a1=2,a2=3,则a2022的值为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面为正方形,,直线垂直于平面分别为的中点,直线与相交于点.(1)证明:与不垂直;(2)求二面角的余弦值.18.(12分)已知函数.(1)记函数,当时,讨论函数的单调性;(2)设,若存在两个不同的零点,证明:为自然对数的底数).19.(12分)已知正三棱柱底面边长为,是上一点,是以为直角顶点的等腰直角三角形(1)证明:是中点;(2)求点到平面的距离20.(12分)已知双曲线的左、右焦点分别为,过作斜率为的弦.求:(1)弦的长;(2)△的周长.21.(12分)如图,在多面体ABCDEF中,四边形ABCD是菱形,∠ABC=60°,FA⊥平面ABCD,ED//FA,且AB=FA=2ED=2(1)求证:平面FAC⊥平面EFC;(2)求多面体ABCDEF的体积22.(10分)已知中,分别为角的对边,且(1)求;(2)若为边的中点,,求的面积

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设出l1的方程为,与抛物线联立后得到两根之和,两根之积,用弦长公式表达出,同理表达出,利用基本不等式求出的最小值.【详解】抛物线C:y2=4x的焦点F为,直线l1的方程为,则联立后得到,设,,,则,同理设可得:,因为|k1·k2|=2,所以,当且仅当,即或时,等号成立,故选:B2、C【解析】化简复数,根据复数的几何意义,即可求解.【详解】由题意,复数,所以复数对应的点为位于第三象限.故选:C.3、D【解析】根据三个实数构成一个等比数列,解得,然后分,讨论求解.【详解】因为三个实数构成一个等比数列,所以,解得,当时,方程表示焦点在x轴上的椭圆,所以,所以,当时,方程表示焦点在y轴上的双曲线,所以,所以,故选:D4、D【解析】由第10个括号内的第一个数为数列的第512项,最后一个数为数列的第1023项,进行分析求解即可【详解】由题意可得,第个括号内有个数,对于A,由题意得前9个括号内共有个数,所以第10个括号内的第一个数为数列的第512项,所以第10个括号内的第一个数为,所以A错误,对于C,前10个括号内共有个数,所以C错误,对于B,令,得,所以2021为数列的第1011项,由AC选项的分析可得2021在第10个括号内,所以B错误,对于D,因为第10个括号内的第一个数为,最后一个数为,所以第10个括号内的数字之和为,所以D正确,故选:D【点睛】关键点点睛:此题考查数列的综合应用,解题的关键是由题意确定出第10个括号内第一个数和最后一个数分别对应数列的哪一项,考查分析问题的能力,属于较难题5、D【解析】由等比数列满足递增数列,可进行和两项关系的比较,从而确定和的大小关系.【详解】由等比数列是递增数列,若,则,得;若,则,得;所以等比数列是递增数列,或,;故等比数列是递增数列是递增数列的一个充分条件为,.故选:D.6、A【解析】根据双曲线定义,且焦点在y轴上,则可直接列出相关不等式.【详解】若方程表示焦点在y轴上的双曲线,则必有:,且解得:故选:7、B【解析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得的值.【详解】抛物线的焦点坐标为,其到直线的距离:,解得:(舍去).故选:B.8、D【解析】由,分两步,当求出,当时得到,两式作差即可求出数列的通项公式;【详解】解:因为①,当时,,当时②,①②得,所以,当时也成立,所以;故选:D9、B【解析】以为坐标原点,所在直线分别为轴,轴,轴建立空间直角坐标系,根据向量垂直的坐标表示求出,再利用向量的坐标运算可得,根据共线定理即可判断.【详解】设正方体的棱长为1.以为坐标原点,所在直线分别为轴,轴,轴建立空间直角坐标系,则.设,则,取.,.故选:B【点睛】本题考查了空间向量垂直的坐标表示、空间向量的坐标表示、空间向量共线定理,属于基础题.10、D【解析】设等比数列公比为q,根据给定条件求出即可计算作答.【详解】等比数列公比为q,由得:,即,而,解得,所以.故选:D11、D【解析】A选项:否命题应该对条件结论同时否定,说法不正确;B选项:双曲线的离心率大于,解得,所以说法不正确;C选项:否定应该是:,,所以说法不正确;D选项:“在中,若,则是锐角三角形”是假命题,所以其逆否命题也为假命题,所以说法正确.【详解】命题“若,则”的否命题是“若,则”,所以A选项不正确;双曲线的离心率大于,即,解得,则“”是“双曲线的离心率大于”的充分不必要条件,所以B选项不正确;命题“,”的否定是“,”,所以C选项不正确;命题“在中,若,则是锐角三角形”,在中,若,可能,此时三角形不是锐角三角形,所以这是一个假命题,所以其逆否命题也是假命题,所以该选项说法正确.故选:D【点睛】此题考查四个命题关系,充分条件与必要条件,含有一个量词的命题的否定,关键在于弄清逻辑关系,正确求解.12、A【解析】本题考查极坐标与直角坐标互化由点M的极坐标,知极坐标与直角坐标的关系为,所以的直角坐标为即故正确答案为A二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】根据抛物线的定义可知,点P到抛物线准线的距离等于点P到焦点F的距离,过焦点F作直线:的垂线,此时取得最小值,利用点到直线的距离公式,即可求解.【详解】由题意,抛物线的焦点坐标为,准线方程为,如图所示,根据抛物线的定义可知,点P到抛物线准线的距离等于点P到焦点F的距离,过焦点F作直线:的垂线,此时取得最小值,由点到直线的距离公式可得,即的最小值为3.【点睛】本题主要考查了抛物线的标准方程及其简单的几何性质的应用,以及抛物线的最值问题,其中解答中根据抛物线的定义可知,点P到抛物线准线的距离等于点P到焦点F的距离,利用点到直线的距离公式求解是解答的关键,着重考查了转化思想,以及运算与求解能力,属于中档试题.14、【解析】设M,N的中点坐标为P,,则;由于,化简可得,根据椭圆的定义==6,所以12.考点:1.椭圆的定义;2.两点距离公式.15、5【解析】根据得出,设,从而利用双曲线的定义可求出,的关系,从而可求出答案.【详解】设双曲线的焦距为,则,因为,所以,因为,不妨设,,由双曲线的定义可得,所以,,由勾股定理可得,,所以,所以双曲线的离心率故答案为:.16、【解析】根据递推关系求出数列的前几项,得周期性,然后可得结论【详解】由题意,,,,,,所以数列是周期数列,周期为6,所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,求出点的坐标,计算得出,即可证得结论成立;或利用反证法;(2)利用空间向量法即求.【小问1详解】方法一:如图以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、、设,因为,,因为,所以,得,即点,因为,,所以,故与不垂直方法二:假设与垂直,又直线平面平面,所以.而与相交,所以平面又平面,从而又已知是正方形,所以与不垂直,这产生矛盾,所以假设不成立,即与不垂直得证.【小问2详解】设平面的法向量为,又,因为,所以,令,得.设平面的法向量为,因为,所以,令,得.因为.显然二面角为钝二面角,所以二面角的余弦值是.18、(1)在和上单调递增;在上单调递减(2)证明见解析【解析】(1)先求导,然后对导数化简整理后再解不等式即可得单调性;(2)要证明,通过求函数的极值可证明,要证,根据有两个不同的零点,将问题转化为证明成立,再通过换元从求函数的最值上证明.【小问1详解】因为,所以,令,得或.所以时,或;时,.所以在和上单调递增;在上单调递减.【小问2详解】因为,所以.当时,,可得在上单调递减,此时不可能存在两个不同的零点,不符合题意.当时,.令,得.当时,;当时,.所以在上单调递增,在上单调递减.而当时,,时,.所以要使存在两个不同的零点,则,即,解得.因为存在两个不同的零点,则,即.不妨设,则,则,要证,即证,即证,即,.即证,令,则,所以在上单调递增,所以,即,所以成立.综上有.【关键点点睛】解决本题的第(1)问的关键是对导函数的分子因式分解;解决第(2)问的关键一是分步证明,二是研究函数的单调性,三是转化思想的运用,四是换元思想的运用.19、(1)证明见解析;(2).【解析】(1)证明出平面,可得出,再利用等腰三角形的几何性质可证得结论成立;(2)计算出三棱锥的体积以及的面积,利用等体积法可求得点到平面的距离.【小问1详解】证明:在正三棱柱,平面,平面,则,因为是以为直角顶点的等腰直角三角形,则,,则平面,平面,所以,,因为为等边三角形,故点为的中点.【小问2详解】解:因为是边长为的等边三角形,则,平面,平面,则,即,所以,,,,设点到平面的距离为,,,解得.因此,点到平面距离为.20、(1);(2).【解析】(1)联立直线方程与双曲线方程,求得交点的坐标,再用两点之间的距离公式即可求得;(2)根据(1)中所求,利用两点之间的距离公式,即可求得三角形周长.【小问1详解】设点的坐标分别为,由题意知双曲线的左、右焦点坐标分别为、,直线的方程,与联立得,解得,代入的方程为分别解得.所以.【小问2详解】由(1)知,,,所以△的周长为.21、(1)证明见解析;(2).【解析】(1)连接BD交AC于点O,设FC的中点为P,连接OP,EP,证明BD//EP,BD⊥平面FAC即可推理作答.(2)求出三棱锥和四棱锥的体积即可计算作答.【小问1详解】连接BD交AC于点O,设FC的中点为P,连接OP,EP,如图,菱形ABCD中,O为AC的中点,则OP//FA,且,而ED//FA,且FA=2ED,于是得OP//ED,且OP=ED,即有四边形OPED为平行四边形,则OD//EP,即BD//EP,因为FA⊥平面ABCD,BD平面ABCD,则FA⊥BD,又四边形ABCD是菱形,即BD⊥AC,而FAAC=A,平面FAC,因此,BD⊥平面FAC,即EP⊥平面FAC,又EP平面EFC,所以平面FAC⊥平面EFC.【小问2详解】由已知,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论