2025届黑龙江省哈尔滨市哈三中高一上数学期末综合测试试题含解析_第1页
2025届黑龙江省哈尔滨市哈三中高一上数学期末综合测试试题含解析_第2页
2025届黑龙江省哈尔滨市哈三中高一上数学期末综合测试试题含解析_第3页
2025届黑龙江省哈尔滨市哈三中高一上数学期末综合测试试题含解析_第4页
2025届黑龙江省哈尔滨市哈三中高一上数学期末综合测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届黑龙江省哈尔滨市哈三中高一上数学期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.表示集合中整数元素的个数,设,,则()A.5 B.4C.3 D.22.设,则A. B.C. D.3.已知函数,则不等式的解集为()A. B.C. D.4.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.函数的最小正周期是()A. B.C. D.36.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()A. B.C. D.7.若,则下列不等式中,正确的是()A. B.C. D.8.已知函数,则A.最大值为2,且图象关于点对称B.周期为,且图象关于点对称C.最大值为2,且图象关于对称D.周期为,且图象关于点对称9.函数的单调递减区间是()A.() B.()C.() D.()10.设,,,则a、b、c的大小关系是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则函数的值域为______12.若函数在区间上没有最值,则的取值范围是______.13.已知函数满足下列四个条件中的三个:①函数是奇函数;②函数在区间上单调递增;③;④在y轴右侧函数的图象位于直线上方,写出一个符合要求的函数________________________.14.已知函数,则___________.15.已知,均为正数,且,则的最大值为____,的最小值为____.16.在中,已知是延长线上一点,若,点为线段的中点,,则_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.求满足下列条件的直线方程:(要求把直线的方程化为一般式)(1)经过点,且斜率等于直线的斜率的倍;(2)经过点,且在x轴上截距等于在y轴上截距的2倍18.已知函数,(1)若,解不等式;(2)若函数恰有三个零点,,,求的取值范围19.已知,,求下列各式的值:(1)(2)20.已知函数(,且).(1)判断函数的奇偶性,并予以证明;(2)求使的x的取值范围.21.已知函数f(x)=sin(2x+π(1)列表,描点,画函数f(x)的简图,并由图象写出函数f(x)的单调区间及最值;(2)若f(x1)=f(x2)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】首先求出集合,再根据交集的定义求出,即可得解;【详解】解:因为,,所以,则,,,所以;故选:C2、B【解析】函数在上单调递减,所以,函数在上单调递减,所以,所以,答案为B考点:比较大小3、D【解析】由题可得函数为偶函数,且在上为增函数,可得,然后利用余弦函数的性质即得.【详解】∵函数,定义域为R,∴,∴函数为偶函数,且在上为增函数,,∵,∴,即,又,∴.故选:D.4、A【解析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可.【详解】求解二次不等式可得:或,据此可知:是的充分不必要条件.故选:A.【点睛】本题主要考查二次不等式的解法,充分性和必要性的判定,属于基础题.5、A【解析】根据解析式,由正切函数的性质求最小正周期即可.【详解】由解析式及正切函数的性质,最小正周期.故选:A.6、B【解析】因为线段的垂直平分线上的点到点,的距离相等,所以即:,化简得:故选7、C【解析】利用不等式的基本性质判断.【详解】由,得,即,故A错误;则,则,即,故B错误;则,,所以,故C正确;则,所以,故D错误;故选:C8、A【解析】,∵,∴,则的最大值为;∵,∴周期;当时,图象关于某一点对称,∴当,求出,即图象关于对称,故选A考点:三角函数的性质.9、A【解析】根据余弦函数单调性,解得到答案.【详解】解:,令,,解得,,故函数的单调递减区间为;故选:A.10、D【解析】根据指数函数与对数函数性质知,,,可比较大小,【详解】解:,,;故选D【点睛】在比较幂或对数大小时,一般利用指数函数或对数函数的单调性,有时还需要借助中间值与中间值比较大小,如0,1等等二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】,又,∴,∴故答案为12、【解析】根据正弦函数的图像与性质,可求得取最值时的自变量值,由在区间上没有最值可知,进而可知或,解不等式并取的值,即可确定的取值范围.【详解】函数,由正弦函数的图像与性质可知,当取得最值时满足,解得,由题意可知,在区间上没有最值,则,,所以或,因为,解得或,当时,代入可得或,当时,代入可得或,当时,代入可得或,此时无解.综上可得或,即的取值范围为.故答案为:.【点睛】本题考查了正弦函数的图像与性质应用,由三角函数的最值情况求参数,注意解不等式时的特殊值取法,属于难题.13、【解析】满足①②④的一个函数为,根据奇偶性以及单调性,结合反比例函数的性质证明①②④.【详解】满足①②④对于①,函数的定义域为关于原点对称,且,即为奇函数;对于②,任取,且因为,所以,即函数在区间上单调递增;对于④,令,当时,,即在y轴右侧函数的图象位于直线上方故答案为:【点睛】关键点睛:解决本题的关键在于利用定义证明奇偶性以及单调性.14、【解析】利用函数的解析式由内到外逐层计算可得的值.【详解】因为,则,故.故答案为:.15、①.②.##【解析】利用基本不等式的性质即可求出最大值,再通过消元转化为二次函数求最值即可.【详解】解:由题意,得4=2a+b≥2,当且仅当2a=b,即a=1,b=2时等号成立,所以0<ab≤2,所以ab的最大值为2,a2+b2=a2+(4-2a)2=5a2-16a+16=5(a-)2+≥,当a=,b=时取等号.故答案为:,.16、【解析】通过利用向量的三角形法则,以及向量共线,代入化简即可得出【详解】解:∵()(),∴λ,∴故答案为【点睛】本题考查了向量共线定理、向量的三角形法则,考查了推理能力与计算能力,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】(1)由题意可得的斜率为,即可得所求直线的斜率,代入点斜式方程,即可得直线的方程,化简整理,即可得答案.(2)当直线不过原点时,设直线在y轴截距为a,根据直线方程的截距式,代入点坐标,即可得直线方程;直线过原点时,设直线方程为,代入点坐标,即可得直线方程,综合即可得答案.【详解】(1)因为直线的斜率为,所以所求直线的斜率为,所以所求直线方程为,化简得(2)由题意,当直线不过原点时,设直线在y轴截距为a,则所求直线方程为,将代入,可得,解得,所以直线方程为;当直线过原点时,设直线方程为,将代入,可得,解得,所以直线方程为,即,综上可得,所求直线方程为或18、(1)(2)【解析】(1)分当时,当时,讨论去掉绝对值,由一元二次不等式的求解方法可得答案;(2)得出分段函数的解析式,根据二次函数的性质和根与系数的关系可求得答案.【小问1详解】解:当时,原不等式可化为…①(ⅰ)当时,①式化为,解得,所以;(ⅱ)当时,①式化为,解得,所以综上,原不等式的解集为【小问2详解】解:依题意,因为,且二次函数开口向上,所以当时,函数有且仅有一个零点所以时,函数恰有两个零点所以解得不妨设,所以,是方程的两相异实根,则,所以因为是方程的根,且,由求根公式得因为函数在上单调递增,所以,所以.所以.所以a的取值范围是19、(1).(2)【解析】(1)利用二倍角公式和诱导公式直接求解;(2)判断出,根据,求出的值.【小问1详解】因为,所以.【小问2详解】.因为,所以,所以,所以,所以,所以20、(1)是奇函数,证明见解析;(2).【解析】(1)先根据对数函数的定义得函数的定义域关于原点对称,再根据函数的奇偶性定义判断即可;(2)由已知条件得,再分与两种情况讨论,结合对数函数的单调性列出不等式组,求出x的取值范围即可.【详解】(1)函数是奇函数.证明:要使函数的解析式有意义,需的解析式都有意义,即解得,所以函数的定义域是,所以函数的定义域关于原点对称.因为所以函数是奇函数.(2)若,即.当时,有解得;当时,有解得,综上所述,当时,x的取值范围是,当时,x的取值范围是.【点睛】该题考查的是有关函数的问题,涉及到的知识点有本题函数的奇偶性的判断与证明、对数函数的单调性、根据单调性解不等式,不用对参数进行讨论,属于中档题目.21、(1)图象见解析,在[-π4,π8]、[5π(2)答案见解析.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论