




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省东营市垦利区第一中学2025届数学高一上期末学业质量监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图象的横坐标和纵坐标同时扩大为原来的3倍,再将图象向右平移3个单位长度,所得图象的函数解析式为A. B.C. D.2.“是”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知函数,则的概率为A. B.C. D.4.已知,则的周期为()A. B.C.1 D.25.已知偶函数在单调递减,则使得成立的的取值范围是A. B.C. D.6.若在上单调递减,则的取值范围是().A. B.C. D.7.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为()A.y=2sin B.y=C.y=2sin D.y=2sin8.设,,定义运算“△”和“”如下:,.若正数,,,满足,,则()A.△,△ B.,C.△, D.,△9.已知函数,若关于的不等式恰有一个整数解,则实数的最小值是A. B.C. D.10.函数的零点所在的一个区间是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知与之间的一组数据如下,且它们之间存在较好的线性关系,则与的回归直线方程必过定点__________12.已知,,则_________.13.已知圆心为(1,1),经过点(4,5),则圆的标准方程为_____________________.14.已知在平面直角坐标系中,角顶点在原点,始边与轴的正半轴重合,终边经过点,则___________.15.函数满足,则值为_____.16.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为的水车,以水车的中心为原点,过水车的中心且平行于水平面的直线为轴,建立如图平面直角坐标系,一个水斗从点出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时秒.经过秒后,水斗旋转到点,设点的坐标为,其纵坐标满足,当秒时,___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.问题:是否存在二次函数同时满足下列条件:,的最大值为4,______?若存在,求出的解析式;若不存在,请说明理由.在①对任意都成立,②函数的图像关于轴对称,③函数的单调递减区间是这三个条件中任选一个,补充在上面问题中作答.注:如果选择多个条件分别解答,按第一个解答计分.18.设集合,.(1)若,求;(2)若“”是“”的充分不必要条件,求实数m的取值范围.19.如图,某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道(直角三角形三条边,是直角顶点)来处理污水,管道越长,污水净化效果越好.要求管道的接口是的中点,分别落在线段上(含线段两端点),已知米,米,记.(1)试将污水净化管道的总长度(即的周长)表示为的函数,并求出定义域;(2)问取何值时,污水净化效果最好?并求出此时管道的总长度.20.已知函数.(Ⅰ)求的单调区间;(Ⅱ)求函数的对称轴和对称中心.21.已知,是夹角为的两个单位向量,且向量,求:,,;向量与夹角的余弦值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】函数的图像的横坐标和纵坐标同时扩大为原来的3倍,所得图像的解析式为,再向右平移3个单位长度,所得图像的解析式为,选D.2、B【解析】先化简两个不等式,再去判断二者间的逻辑关系即可解决.【详解】由可得;由可得则由不能得到,但由可得故“是”的必要不充分条件.故选:B3、B【解析】由对数的运算法则可得:,当时,脱去符号可得:,解得:,此时;当时,脱去符号可得:,解得:,此时;据此可得:概率空间中的7个数中,大于1的5个数满足题意,由古典概型公式可得,满足题意的概率值:.本题选择B选项.4、A【解析】利用两角和的正弦公式化简函数,代入周期计算公式即可求得周期.【详解】,周期为:故选:A【点睛】本题考查两角和的正弦公式,三角函数的最小正周期,属于基础题.5、C【解析】∵函数为偶函数,∴∵函数在单调递减∴,即∴使得成立的的取值范围是故选C点睛:这个题目考查的是抽象函数的单调性和奇偶性,在不等式中的应用.解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内.6、B【解析】令f(x)=,由题意得f(x)在上单调递增,且f(﹣1),由此能求出a的取值范围【详解】∵函数在上单调递减,令f(x)=,∴f(x)=在上单调递增,且f(﹣1)∴,解得a≤8故选B.【点睛】本题考查实数值的求法,注意函数的单调性的合理运用,属于基础题.7、C【解析】先从图象中看出A,再求出最小正周期,求出ω,代入特殊值后结合φ范围求出φ的值,得到答案.【详解】由图象可知A=2,因为-==,所以T=,ω=2.当x=-时,2sin=2,即sin=1,又|φ|<,解得φ=.故函数的解析式为y=2sin.故选:C8、D【解析】根据所给运算,取特殊值检验即可排除ACB,得到答案.【详解】令满足条件,则,可排除A,C;令满足。则,排除B;故选:D9、A【解析】将看作整体,先求的取值范围,再根据不等式恰有一个整点和函数的图像,推断参数,的取值范围【详解】做出函数的图像如图实线部分所示,由,得,若,则满足不等式,不等式至少有两个整数解,不满足题意,故,所以,且整数解只能是4,当时,,所以,选择A【点睛】本题考查了分段函数的性质,一元二次不等式的解法,及整体代换思想,数形结合思想的应用,需要根据题设条件,将数学语言转化为图形表达,再转化为参数的取值范围10、B【解析】根据函数的解析式,求得,结合零点的存在定理,即可求解,得到答案.【详解】由题意,函数,可得,即,根据零点的存在定理,可得函数的零点所在的一个区间是.故选:B.【点睛】本题主要考查了函数的零点问题,其中解答中熟记函数零点的存在定理,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】因为与的回归直线方程必过定点则与的回归直线方程必过定点.即答案为.12、【解析】利用两角差的正切公式可计算出的值.【详解】由两角差的正切公式得.故答案为:.【点睛】本题考查利用两角差的正切公式求值,解题的关键就是弄清角与角之间的关系,考查计算能力,属于基础题.13、【解析】设出圆的标准方程,代入点的坐标,求出半径,求出圆的标准方程【详解】设圆的标准方程为(x-1)2+(y-1)2=R2,由圆经过点(4,5)得R2=25,从而所求方程为(x-1)2+(y-1)2=25,故答案为(x-1)2+(y-1)2=25【点睛】本题主要考查圆的标准方程,利用了待定系数法,关键是确定圆的半径14、【解析】根据角的终边经过点,利用三角函数的定义求得,然后利用二倍角公式求解.【详解】因为角的终边经过点,所以,所以,所以,故答案为:15、【解析】求得后,由可得结果.【详解】,,.故答案为:.16、【解析】求出关于的函数解析式,将代入函数解析式,求出的值,可得出点的坐标,进而可求得的值.【详解】由题意可知,,函数的最小正周期为,则,所以,,点对应,,则,可得,,,故,当时,,因为,故点不与点重合,此时点,则.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、若选择①,;若选择②,;若选择③,【解析】由可得,由所选的条件可得的对称轴,再由的最大值为4,可得关于的方程,求解即可.【详解】解:由,可得:,;若选择①,对任意都成立,故的对称轴为,即,又的最大值为4,且,解得:,故;若选择②,函数图像关于轴对称,故的对称轴为,即,又的最大值为4,且,解得:,故;若选择③,函数的单调递减区间是,故的对称轴为,即,又的最大值为4,且,解得:,故.18、(1);(2);【解析】(1)由集合描述求集合、,根据集合交运算求;(2)由充分不必要条件知⫋,即可求m的取值范围.【详解】,(1)时,,∴;(2)“”是“”的充分不必要条件,即⫋,又且,∴,解得;【点睛】本题考查了集合的基本运算,及根据充分不必要条件得到集合的包含关系,进而求参数范围,属于基础题.19、(1),(2)或时,L取得最大值为米【解析】(1)解直角三角形求得得EH、FH、EF的解析式,再由L=EH+FH+EF得到污水净化管道的长度L的函数解析式,并注明θ的范围(2)设sinθ+cosθ=t,根据函数L=在[,]上是单调减函数,可求得L的最大值.同时也可求得值【小问1详解】由题意可得,,,由于,,所以,,,即,【小问2详解】设,则,由于,由于在上是单调减函数,当时,即或时,L取得最大值为米20、(1)单调递增区间为,单调递减区间为:;(2)对称中心为:,对称轴方程为:.【解析】详解】试题分析:(1)将看作一个整体,根据余弦函数的单调区间求解即可.(2)将看作一个整体,根据余弦函数的对称中心和对称轴建立方程可求得函数的对称轴和对称中心试
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沉降观测与地基处理合同范本
- 生态农业采棉驾驶员劳务合同
- 民办教育机构场地租赁及教育资源合作合同
- 建筑劳务公司合同(4篇)
- 吉利学院宿舍管理制度
- 初三班主任个人计划(4篇)
- 接发列车客观复习试题有答案(一)
- 行政组织理论的多维度评估试题及答案
- 测试题的解析与公路工程试题及答案
- 数据库考试方法论试题及答案
- 请结合身边实际谈谈全面建成小康社会的历史意义是什么?(六)
- 中考词汇完整版
- 英语试卷【百强校大联考】【天域卷】天域全国名校协作体2024-2025学年第二学期2025届高三年级联考(5.23-5.24)含答案或解析
- Photoshop图像美化的实战经验与分享试题及答案
- 2025届天津市和平区第二十中学数学八下期末复习检测模拟试题含解析
- (五调)武汉市2025届高三年级五月模拟训练语文试卷(含答案详解)
- 政府委托经营协议书
- 江苏省南通市通州区、如东县2025届九年级下学期中考一模化学试卷(含答案)
- (统编2024版)七下语文期末专题总复习课件(共6个专题)新教材
- 【MOOC答案】《电力电子学》(华中科技大学)章节作业期末慕课答案
- 职业技术学院现代通信技术专业人才培养方案(2024版)
评论
0/150
提交评论