版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页2025届安徽阜阳鸿升中学数学九年级第一学期开学达标检测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)不等式组的解集为()A.x>-1 B.x<3 C.x<-1或x>3 D.-1<x<32、(4分)如图,矩形ABCD中,点E,F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若,,则图中阴影部分的面积为()A.4 B.6 C.12 D.243、(4分)如图,▱OABC的顶点O、A、C的坐标分别是(0,0),(2,0),(0.5,1),则点B的坐标是()A.(1,2) B.(0.5,2) C.(2.5,1) D.(2,0.5)4、(4分)已知张强家、体育场、文具店在同一直线上.如图的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x表示时间,y表示张强离家的距离.则下列说法错误的是()A.体育场离张强家2.5千米B.体育场离文具店1千米C.张强在文具店逗留了15分钟D.张强从文具店回家的平均速度是千米/分5、(4分)如图,在矩形ABCD中,AB=4cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在这段时间内,线段PQ有()次平行于AB?A.1 B.2 C.3 D.46、(4分)一个三角形的两边长分别是3和7,则第三边长可能是()A.2 B.3 C.9 D.107、(4分)平行四边形、矩形、菱形、正方形都具有的是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线互相垂直且相等8、(4分)如图,在□ABCD中,AB⊥AC,若AB=4,AC=6,则BD的长是()A.11 B.10 C.9 D.8二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,中,,,,点是边上一定点,且,点是线段上一动点,连接,以为斜边在的右侧作等腰直角.当点从点出发运动至点停止时,点的运动的路径长为_________.10、(4分)在学校的社会实践活动中,一批学生协助搬运初一、二两个年级的图书,初一年级需要搬运的图书数量是初二年级需要搬运的图书数量的两倍.上午全部学生在初一年级搬运,下午一半的学生仍然留在初一年级(上下午的搬运时间相等)搬运,到放学时刚好把初一年级的图书搬运完.下午另一半的学生去初二年级搬运图书,到放学时还剩下一小部分未搬运,最后由三个学生再用一整天的时间刚好搬运完.如果这批学生每人每天搬运的效率是相同的,则这批学生共有人数为______.11、(4分)若代数式和的值相等,则______.12、(4分)不等式2x-1>x解集是_________.13、(4分)写出一个你熟悉的既是轴对称又是中心对称的图形名称______.三、解答题(本大题共5个小题,共48分)14、(12分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,连接CD,过E点作EF∥DC交BC的延长线于点F.(1)求证:四边形CDEF是平行四边形;(2)求四边形CDEF的周长.15、(8分)如图,矩形中,对角线的垂直平分线与相交于点,与相交于点,连接,.求证:四边形是菱形.16、(8分)在RtΔABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF//BC交BE的延长线于点F,连接CF.(1)求证:AF=BD.(2)求证:四边形ADCF是菱形.17、(10分)已知直线的图象经过点和点(1)求的值;(2)求关于的方程的解(3)若、为直线上两点,且,试比较、的大小18、(10分)如图:是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题:(1)当行使8千米时,收费应为元;(2)从图象上你能获得哪些信息?(请写出2条)①________②____________________________(3)求出收费y(元)与行使x(千米)(x≥3)之间的函数关系式.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)当x_____时,二次根式有意义.20、(4分)方程2(x﹣5)2=(x﹣5)的根是_____.21、(4分)如果两个最简二次根式与能合并,那么______.22、(4分)已知点A(),B()是一次函数图象上的两点,当时,__.(填“>”、“=”或“<”)23、(4分)汽车行驶前油箱中有汽油52公升,已知汽车每百公里耗油8公升,油箱中的余油量Q(公升)(油箱中剩余的油量不能少于4公升)与它行驶的距离s(百公里)之间的函数关系式为_____(注明s的取值范围).二、解答题(本大题共3个小题,共30分)24、(8分)如图,在△ABC中,AB=AC,BC=10,D为AB上一点,CD=8,BD=1.(1)求证:∠CDB=90°;(2)求AC的长.25、(10分)(1)发现规律:特例1:===;特例2:===;特例3:=4;特例4:______(填写一个符合上述运算特征的例子);(2)归纳猜想:如果n为正整数,用含n的式子表示上述的运算规律为:______;(3)证明猜想:(4)应用规律:①化简:×=______;②若=19,(m,n均为正整数),则m+n的值为______.26、(12分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解在“平行四边形、菱形、矩形、正方形”中是“等邻边四边形”的是.(2)概念应用在Rt△ABC中,∠C=90°,AB=5,AC=3.点D是AB边的中点,点E是BC边上的一个动点,若四边形ADEC是“等邻边四边形”,则CE=.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】分析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.详解:解不等式3−2x<5,得:x>−1,解不等式x−2<1,得:x<3,∴不等式组的解集为−1<x<3,故选:D.点睛:此题考查不等式的解集,根据求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到,即可解答.2、C【解析】
由题意可知,,,所以阴影部分的面积就等于矩形面积的一半.【详解】解:由题意可知,,故答案为:C本题考查了与矩形有关的面积问题,确定所求面积与矩形面积的数量关系是解题的关键.3、C【解析】
延长BC交y轴于点D,由点A的坐标得出OA=2,由平行四边形的性质得出BC=OA=2,由点C的坐标得出OD=1,CD=0.5,求出BD=BC+CD=2.5,即可得出点B的坐标.【详解】延长BC交y轴于点D,如图所示:∵点A的坐标为(2,0),∴OA=2,∵四边形OABC是平行四边形,∴BC=OA=2,∵点C的坐标是(0.5,1),∴OD=1,CD=0.5,∴BD=BC+CD=2.5,∴点B的坐标是(2.5,1);故选:C.此题考查坐标与图形性质,平行四边形的性质,解题关键在于作辅助线.4、C【解析】
(1)因为张强从就家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离张强家的距离;(2)张强从体育场到文具店的递减函数,此段函数图象的最高点与最低点纵坐标的差为张强家到文具店的距离;(3)中间一段与x轴平行的线段是张强在图书馆停留的时间;(4)先求出张强家离文具店的距离,再求出从文具店到家的时间,最后求出二者的比值即可.【详解】解:(1)由函数图象可知,体育场离张强家2.5千米,从家到体育场用了15分;
(2)由函数图象可知,张强家离文具店1.5千米,离体育场2.5千米,所以体育场离文具店1千米;
(3)张强在文具店停留了分;
(4)从图象可知:文具店离张强家1.5千米,张强从文具店散步走回家花了分,
∴张强从文具店回家的平均速度是千米/分.本题考查的是函数图象,正确理解函数图象横纵坐标表示的意义是解答此题的关键.5、D【解析】∵矩形ABCD,AD=12cm,∴AD=BC=12cm,∵PQ∥AB,AP∥BQ,∴四边形ABQP是平行四边形,∴AP=BQ,∴Q走完BC一次就可以得到一次平行,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次,∴线段PQ有4次平行于AB,故选D.6、C【解析】设第三边长为x,由题意得:7-3<x<7+3,则4<x<10,故选C.【点睛】本题主要考查了三角形的三边关系:第三边的范围是:大于已知的两边的差,而小于两边的和.7、A【解析】试题分析:平行四边形的对角线互相平分,而对角线相等、平分一组对角、互相垂直不一定成立.故平行四边形、矩形、菱形、正方形都具有的性质是:对角线互相平分.故选A.考点:特殊四边形的性质8、B【解析】
利用平行四边形的性质可知AO=2,在Rt△ABO中利用勾股定理可得BO=5,则BD=2BO=1.【详解】解:∵四边形ABCD是平行四边形,∴BD=2BO,AO=OC=2.在Rt△ABO中,利用勾股定理可得:BO=3∴BD=2BO=1.故选:B.本题主要考查了平行四边形的性质、勾股定理.解题的技巧是平行四边形转化为三角形问题解决.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
如图,连接CF,作FM⊥BC于M,FN⊥AC于N.证明△FNA≌△FME(AAS),推出FM=FM,AN=EM,推出四边形CMFN是正方形,推出点F在射线CF上运动(CF是∠ACB的角平分线),求出两种特殊位置CF的长即可解决问题.【详解】如图,连接CF,作FM⊥BC于M,FN⊥AC于N.
∵∠FNC=∠MCN=∠FMC=90°,
∴四边形CMFN是矩形,
∴∠MFN=∠AFE=90°,
∴∠AFN=∠MFE,
∵AF=FE,∠FNA=∠FME=90°,
∴△FNA≌△FME(AAS),
∴FM=FM,AN=EM,
∴四边形CMFN是正方形,
∴CN=CM,CF=CM,∠FCN=∠FCM=45°,
∵AC+CE=CN+AN+CM-EM=2CM,
∴CF=(AC+CE).
∴点F在射线CF上运动(CF是∠ACB的角平分线),
当点E与D重合时,CF=(AC+CD)=2,
当点E与B重合时,CF=(AC+CB)=,
∵-2=,
∴点F的运动的路径长为.
故答案为:.此题考查全等三角形的判定与性质,等腰直角三角形的性质,解题关键在于灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.10、8【解析】
设二年级需要搬运的图书为a本,则一年级搬运的图书为2a本,这批学生有x人,每人每天的搬运效率为m,根据题意的等量关系建立方程组求出其解即可.【详解】解:设二年级需要搬运的图书为a本,则一年级搬运的图书为2a本,这批学生有x人,每人每天的搬运效率为m,由题意得:解得:x=8,即这批学生有8人本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,设参数法列方程解实际问题的运用,解答时根据工作量为2a和a建立方程是关键,运用整体思想是难点.11、【解析】
由题意直接根据解分式方程的一般步骤进行运算即可.【详解】解:由题意可知:=故答案为:.本题考查解分式方程,熟练掌握解分式方程的一般步骤是解题的关键.12、x>1【解析】
将不等式未知项移项到不等式左边,常数项移项到方程右边,合并后将x的系数化为1,即可求出原不等式的解集.【详解】解:2x-1>x,
移项得:2x-x>1,
合并得:x>1,
则原不等式的解集为x>1.
故答案为:x>1此题考查了一元一次不等式的解法,解一元一次不等式的步骤为:去分母,去括号,移项,合并同类项,将x的系数化为1求出解集.13、矩形【解析】
根据轴对称图形与中心对称图形的概念求解:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】既是中心对称图形又是轴对称图形的名称:矩形(答案不唯一).故答案为:矩形本题考查的是轴对称图形和中心对称图形,掌握好中心对称图形与轴对称图形的概念是解题关键.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.三、解答题(本大题共5个小题,共48分)14、(1)证明见解析;(2)四边形CDEF的周长为2+2.【解析】
(1)直接利用三角形中位线定理得出,再利用平行四边形的判定方法得出答案;(2)利用等边三角形的性质结合平行四边形的性质得出,进而求出答案.【详解】(1)证明:、分别为、的中点,是的中位线,,,四边形是平行四边形;(2)解:四边形是平行四边形,,为的中点,等边的边长是2,,,,,四边形的周长.此题主要考查了等边三角形的性质以及平行四边形的判定与性质、三角形中位线定理等知识,正确掌握平行四边形的性质是解题关键.15、见解析【解析】
先证明四边形AMCN为平行四边形,再根据对角线互相垂直的平行四边形是菱形即可证得结论.【详解】是矩形,则,,而是的垂直平分线,则,,而,,,四边形为平行四边形,又,四边形是菱形.本题考查了矩形的性质,平行四边形的判定,菱形的判定等,正确把握相关的性质定理与判定定理是解题的关键.16、(1)见解析;(2)见解析【解析】
(1)根据已知条件易证ΔAFE≅ΔDBE,利用全等三角形的性质即可证得结论;(2)根据(1)的结论,结合已知条件证得AF=CD,利用一组对边平行且相等的四边形为平行四边形,证得四边形ADCF是平行四边形,再利用直角三角形斜边的中线等于斜边的一半证得AD=12BC=DC,由一组邻边相等的平行四边形为菱形即可判定四边形【详解】(1)证明:如图,∵AF//BC,∴∠AFE=∠DBE,∵ΔABC是直角三角形,AD是BC边上的中线,E是AD的中点,∴AE=DE,BD=CD,在ΔAFE和ΔDBE中,∠AFE=∠DBE∠FEA=∠BED∴ΔAFE≅ΔDBE;∴AF=BD.(2)由(1)知,AF=BD∵BD=CD,∴AF=CD,∵AF//BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=1∴四边形ADCF是菱形.本题考查全等三角形的判定与性质、平行四边形的判定、菱形的判定及直角三角形斜边的中线等于斜边的一半的性质,熟练运用相关知识是解决问题的关键.17、(1)b=1;(2);(3).【解析】
(1)将直线经过的两点代入原直线,联立二元一次方程组即可求得b值;(2)求出k值,解一元一次方程即可;(3)根据k的大小判断直线是y随x的增大而增大的,由此可知、的大小.【详解】解:(1)将(2,4),(-2,-2)代入直线得到:,解得:,∴b=1;(2)已知,b=1,令,解得,∴关于的方程的解是;(3)由于>0,可知直线是y随x的增大而增大的,∵,∴<.本题考查一次函数表达式,增减性,解题时要注意理解一次函数与方程的关系.18、(1)11;(2)如:出租车起步价(3千米内)为5元;超出3千米,每千米加收1.2元等;(3).【解析】试题分析:图象是分段函数,需要分别观察x轴y轴表示的意义,再利用图象过已知点,利用待定系数法求函数关系式.(1)由图知当行使8千米时,收费应为11元.(2)如:出租车起步价(3千米内)为5元;超出3千米,每千米加收1.2元等(3)设函数是y=kx+b(k图象过(3,5)(8,11),所以,解得,所以(x).一、填空题(本大题共5个小题,每小题4分,共20分)19、x≥【解析】分析:根据二次根式的定义,形如的式子叫二次根式,列不等式解答.详解:由题意得2x-3≥0,∴x≥.故答案为x≥.点睛:本题考查了二次根式有意义的条件,明确被开方式大于且等于零是二次根式成立的条件是解答本题的关键.20、x1=1,x2=1.1【解析】
移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】2(x﹣1)2﹣(x﹣1)=0,(x﹣1)[2(x﹣1)﹣1]=0,x﹣1=0,2(x﹣1)﹣1=0,x1=1,x2=1.1,故答案为:x1=1,x2=1.1.本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.21、1【解析】
∵两个最简二次根式能合并,∴,解得:a=1.故答案为1.22、<【解析】试题解析:∵一次函数y=-1x+5中k=-1<0,∴该一次函数y随x的增大而减小,∵x1>x1,∴y1<y1.23、Q=52﹣8s(0≤s≤6).【解析】
求余量与行驶距离之间的关系,每行使百千米耗油8升,则行驶s百千米共耗油8s,所以余量为Q=52﹣8s,根据油箱中剩余的油量不能少于4公升求出s的取值范围.【详解】解:∵每行驶百千米耗油8升,∴行驶s百公里共耗油8s,∴余油量为Q=52﹣8s;∵油箱中剩余的油量不能少于4公升,∴52﹣8s≥4,解得s≤6,∴s的取值范围为0≤s≤6.故答案为:Q=52﹣8s(0≤s≤6).本题考查一次函数在是实际生活中的应用,在求解函数自变量范围的时候,一定要考虑变量在本题中的实际意义.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(2)AC=.【解析】
(1)根据勾股定理的逆定理即可得到答
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浣溪沙晏殊课件第一
- 大学班长管理
- 店铺会议管理
- 职业规划护理大专
- 妊娠期高血压医疗护理查房60
- 医院护士个人年终总结范文3篇
- 简单辞职报告(10篇)
- 德育干事工作总结
- 第一季度工作总结
- 重症肺炎护理查房中医
- 生物脊椎动物-鱼课件 2024-2025学年人教版生物七年级上册
- Revision Lesson 2(教案)-2024-2025学年人教PEP版(2024)英语三年级上册
- 福建省公路水运工程试验检测费用参考指标
- 创新实践(理论)学习通超星期末考试答案章节答案2024年
- 译林版(2024年新版)七年级上册英语 Unit 7单元测试卷(含答案)
- DB65-T 4784-2024 冰川范围调查技术规范
- 药物化学智慧树知到答案2024年徐州医科大学
- 期末+(试题)+-2024-2025学年人教PEP版英语六年级上册
- 《物流信息技术与应用》期末考试复习题库(含答案)
- LNG加气站运营与维护方案
- 人教版数学六上第四单元《比》全单元教学设计
评论
0/150
提交评论