版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
八年级数学下册期末试卷测试卷附答案一、选择题1.函数中自变量的取值范围是()A. B. C. D.2.下列各组数中,不能构成直角三角形的是()A.9、12、15 B.12、18、22 C.8、15、17 D.5、12、133.下列给出的条件中,能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠B=∠C;∠A=∠DC.AB=CD,CB=AD D.AB=AD,CD=BC4.某校对八年级8个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):3.5,4,3,4,3,3.5,3,5.这组数据的中位数和众数是()A.3.5,3 B.4,3 C.3,4 D.3,3.55.的周长为60,三条边之比为,则这个三角形的面积为()A.30 B.90 C.60 D.1206.如图,菱形ABCD中,∠D=140°,则∠1的大小是()A.10° B.20° C.30° D.40°7.如图,点P为正方形ABCD对角线BD的延长线上一点,点M为AD上一点,连接CP,BM,MP,已知AB=4,AM=1,BM=PM,则CP=()A.4 B. C.4 D.58.如图,点C、B分别在两条直线y=﹣3x和y=kx上,点A、D是x轴上两点,若四边形ABCD是正方形,则k的值为()A.3 B.2 C. D.二、填空题9.式子在实数范围内有意义,则实数x的取值范围是________.10.菱形的两条对角线长分别为5和8,则这个菱形的的面积为__________.11.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,BC=12cm,AC=9cm,那么BD的长是_____.12.如图,在矩形ABCD中,E是AB上一点,F是AD上一点,EF⊥FC,且EF=FC,已知DF=5cm,则AE的长为________cm.13.如图,一次函数的图象与坐标轴的交点坐标分别为A(0,2),B(-3,0),下列说法:①随的增大而减小;②;③关于的方程的解为;④关于的不等式的解集.其中说法正确的有_____________.14.在平行四边形ABCD中,对角线AC,BD相交于点O,添加一个条件(不再添加辅助线和字母),使得平行四边形ABCD变成菱形,你添加的条件是:_____________.15.如图,直线:与直线:相交于点,直线与轴交于点,直线与轴交于点与轴交于点,交轴于点.直线上有一点(在轴上方)且,则点的坐标为________.16.中秋节妈妈让小方给姨妈送大闸蟹,小方出发3分钟后,姨妈从家里出发去接小方,又过了10分钟,小方想起来没有带蟹醋,就立即提速至原来的1.5倍冲向前方90米处的便利店买蟹醋.由于过节,便利店人比较多,几分钟后小方才买完蟹醋,刚出便利店就碰到了姨妈,小方与姨妈一同打车回到了姨妈家.小方家,便利店,姨妈家在同一条笔直的公路上,小方与姨妈之间的距离y(米)与小方出发时间x(分钟)之间的函数关系如图所示,那么当小方买完蟹醋碰到姨妈时,距离姨妈家还有_____________米.三、解答题17.计算:(1)-+;(2)-2+;(3)(+)(-)-;(4)(-)2+2×.18.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几”.此问题可理解为:如图,有一架秋千,当它静止时,踏板离地的距离AB的长度为1尺.将它往前推送,当水平距离为10尺时.即尺,则此时秋千的踏板离地的距离就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,求绳索OA的长.19.如图是一个的正方形网格,已知每个小正方形的边长均为1,每个小正方形的顶点称为格点,请按要求解答下列问题:(1)如图,满足线段的格点共有______个;(2)试在图中画出一个格点,使其为等腰三角形,,且的内部只包含4个格点(不包含在边上的格点).20.如图1,在中,于点D,,点E为边AD上一点,且,连接BE并延长,交AC于点F.(1)求证:;(2)过点A作交BF的延长线于点G,连接CG,如图2.若,求证:四边形ADCG是矩形.21.我们规定,若a+b=2,则称a与b是关于1的平衡数.(1)若3与是关于1的平衡数,5-与是关于1的平衡数,求,的值;(2)若(m+)×(1-)=-2n+3(-1),判断m+与5n-是否是关于1的平衡数,并说明理由.22.某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装,专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店支付员工的工资为每人每天82元,每天还应该支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?23.已知四边形ABCD是正方形,将线段CD绕点C逆时针旋转(),得到线段CE,联结BE、CE、DE.过点B作BF⊥DE交线段DE的延长线于F.(1)如图,当BE=CE时,求旋转角的度数;(2)当旋转角的大小发生变化时,的度数是否发生变化?如果变化,请用含的代数式表示;如果不变,请求出的度数;(3)联结AF,求证:.24.如图1,已知一次函数的图象分别交y轴正半轴于点A,x轴正半轴于点B,且的面积是24,P是线段上一动点.(1)求k值;(2)如图1,将沿翻折得到,当点正好落在直线上时,①求点的坐标;②将直线绕点P顺时针旋转得到直线,求直线的表达式;(3)如图2,上题②中的直线与线段相交于点M,将沿着射线向上平移,平移后对应的三角形为,当是以为直角边的直角三角形时,请直接写出点的坐标.25.如图,四边形ABCD是边长为3的正方形,点E在边AD所在的直线上,连接CE,以CE为边,作正方形CEFG(点C、E、F、G按逆时针排列),连接BF.(1)如图1,当点E与点D重合时,BF的长为;(2)如图2,当点E在线段AD上时,若AE=1,求BF的长;(提示:过点F作BC的垂线,交BC的延长线于点M,交AD的延长线于点N.)(3)当点E在直线AD上时,若AE=4,请直接写出BF的长.【参考答案】一、选择题1.A解析:A【分析】根据二次根式与分式的特点即可求解.【详解】依题意可得解得故选A.【点睛】此题主要考查函数自变量取值,解题的关键是熟知二次根式与分式有意义的条件.2.B解析:B【分析】欲判断能否构成直角三角形,只需验证两小边的平方和是否等于最长边的平方.【详解】解:A、92+122=152,能构成直角三角形;B、122+182≠222,不能构成直角三角形;C、82+152=172,能构成直角三角形;D、52+122=132,能构成直角三角形.故选:B.【点睛】本题考查了利用勾股定理逆定理判定直角三角形的方法.在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.C解析:C【解析】【分析】平行四边形的判定定理①两组对边分别相等的四边形是平行四边形,②一组对边平行且相等的四边形是平行四边形,③两组对角分别相等的四边形是平行四边形,④对角线互相平分的四边形是平行四边形,判断即可.【详解】解:A、根据AD∥CD,AD=BC不能判断四边形ABCD是平行四边形,故本选项错误;B、根据∠B=∠C,∠A=∠D不能判断四边形ABCD是平行四边形,故本选项错误;C、根据AB=CD,AD=BC,得出四边形ABCD是平行四边形,故本选项正确;D、根据AB=AD,BC=CD,不能判断四边形ABCD是平行四边形,故本选项错误;故选:C.【点睛】本题考查了对平行四边形的判定定理的应用,关键是能熟练地运用平行四边形的判定定理进行推理,此题是一道比较容易出错的题目.4.A解析:A【解析】【分析】据众数和中位数的定义求解即可,中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.众数:在一组数据中出现次数最多的数.【详解】将3.5,4,3,4,3,3.5,3,5从小到大排列为:3,3,3,3.5,3.5,4,4,5.其中3出现的次数最多,则众数为3,中位数为:.故选A.【点睛】本题考查了求众数和中位数,理解众数和中位数的定义是解题的关键.5.D解析:D【分析】根据已知条件可求得三边的长,再判断这个三角形是直角三角形,即可求得面积.【详解】∵三条边之比为13:12:5,∴122+52=132,∴△ABC是直角三角形,∵△ABC的周长为60,∴三边长分别是:26,24,10,∴这个三角形的面积是:24×10÷2=120,故选D.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6.B解析:B【解析】【分析】由菱形的性质得到DA=DC,∠DAC=∠1,由等腰三角形的性质得到∠DAC=∠DCA=∠1,根据三角形的内角和定理求出∠DAC,即可得到∠1.【详解】解:∵四边形ABCD是菱形,∴DA=DC,∠DAC=∠1,∴∠DAC=∠DCA=∠1,在△ABD中,∵∠D=140°,∠D+∠DAC+∠DCA=180°,∴∠DAC=∠DCA=(180°﹣∠D)=×(180°﹣140°)=20°,∴∠1=20°,故选:B.【点睛】本题考查了菱形的性质,根据等腰三角形的性质和三角形内角和定理求出∠DAC是解决问题的关键.7.B解析:B【解析】【分析】过点M作ME⊥BP于E,过点P作PF⊥BC交BC延长线于F,先根据正方形的性质得到MD=AD-AM=3,∠DME=∠DBC=45°,再由勾股定理求出,,即可得到,由三线合一定理得到,再利用勾股定理求出BF=PF=5,即可得到CF=1,再由求解即可.【详解】解:如图所示,过点M作ME⊥BP于E,过点P作PF⊥BC交BC延长线于F,∵四边形ABCD是正方形,∴AD=AB=4,∠MDE=45°,∠A=90°∴MD=AD-AM=3,∠DME=∠DBC=45°,∴ME=DE,∵,∴,∴,∵,∴,∴,∵BM=PM,∴,∵∠PBC=45°,∠PFB=90°,∴∠BPF=45°,∴BF=PF,,∴,∴PF=BF=5,∴CF=BF-BC=1,∴,故选B.【点睛】本题主要考查了正方形的性质,勾股定理,等腰三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.8.D解析:D【分析】设点C的横坐标为m,则点C的坐标为(m,﹣3m),点B的坐标为(﹣,﹣3m),根据正方形的性质,即可得出关于k的分式方程,解之经检验后即可得出结论.【详解】解:设点C的横坐标为m,∵点C在直线y=-3x上,∴点C的坐标为(m,﹣3m),∵四边形ABCD为正方形,∴BC∥x轴,BC=AB,又点B在直线y=kx上,且点B的纵坐标与点C的纵坐标相等,∴点B的坐标为(﹣,﹣3m),∴﹣﹣m=﹣3m,解得:k=,经检验,k=是原方程的解,且符合题意.故选:D.【点睛】本题考查正方形的性质,正比例函数的图象与性质以及解分式方程等知识点,灵活运用性质是解题的关键.二、填空题9.x≥﹣3【解析】【分析】根据二次根式有意义的条件,根号内的式子必需大于等于0,即可求出答案.【详解】解:式子在实数范围内有意义,则3+x≥0,解得:x≥﹣3.故答案为:x≥﹣3.【点睛】本题主要考查了二次根式有意义,熟练其要求是解决本题的关键.10.20【解析】【分析】菱形的面积是对角线乘积的一半,由此可得出结果.【详解】解:∵菱形的两条对角线长分别为5和8,∴菱形的面积:.故答案为:20.【点睛】本题考查了菱形的面积,菱形面积的求解方法有两种:①底乘以高,②对角线积的一半,解题关键是对面积公式的熟练运用.11.D解析:cm【解析】【分析】作DE⊥AB于E,根据勾股定理求出AB,证明△ACD≌△AED,根据全等三角形的性质得到CD=ED,AE=AC=9,根据角平分线的性质、勾股定理列式计算即可.【详解】解:作DE⊥AB于E,由勾股定理得,AB===15,在△ACD和△AED中,,∴△ACD≌△AED(AAS)∴CD=ED,AE=AC=9,∴BE=AB﹣AE=6,在Rt△BED中,BD2=DE2+BE2,即BD2=(12﹣BD)2+62,解得,BD=,故答案为:cm.【点睛】此题考查的是勾股定理和全等三角形的判定及性质,掌握利用勾股定理解直角三角形和全等三角形的判定及性质是解决此题的关键.12.E解析:5【分析】只需要证明△EAF≌FDC即可得到答案.【详解】解:∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠AFE+∠AEF=90°,∵EF⊥EC,∴∠EFC=90°,∴∠AFE+∠CFD=90°,∴∠AEF=∠DFC,∵EF=CF,∴△EAF≌FDC(AAS),∴AE=FD=5,故答案为:5.【点睛】本题主要考查了矩形的性质,垂直的定义,全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.13.④【分析】根据一次函数的性质,一次函数与一元一次方程的关系对各个说法分析判断即可得解.【详解】解:把,,代入中,可得:,解得:,所以解析式为:;①随的增大而增大,故①说法错误;②,故②说法错误;③关于的方程的解为,故③说法错误;④关于的不等式的解集,故④说法正确.故答案是:④.【点睛】本题主要考查了一次函数的性质,以及一次函数与一元一次方程,解题的关键是:利用数形结合求解.14.A解析:AB=BC【分析】菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.利用菱形的判定方法可得答案.【详解】解:AB=BC.平行四边形ABCD,是菱形.故答案为:AB=BC.【点睛】此题主要考查了菱形的判定,熟练地掌握菱形的判定定理是解决问题的关键.15.【分析】分别解得直线、与坐标轴的交点即点、、,根据平行线的性质解得直线AE的解析式,再解得点,最后由三角形面积公式解题.【详解】解:令,直线与轴的交点,令,直线与轴的交点,直线与直线的解析:【分析】分别解得直线、与坐标轴的交点即点、、,根据平行线的性质解得直线AE的解析式,再解得点,最后由三角形面积公式解题.【详解】解:令,直线与轴的交点,令,直线与轴的交点,直线与直线的交点为:即解得,把代入得,令,直线与轴的交点,设直线AE的解析式为,将点代入得,当时,把代入直线:,得故答案为:.【点睛】本题考查一次函数的图象与性质、待定系数法求一次函数解析式、一次函数与二元一次方程组、三角形面积等知识,是重要考点,掌握相关知识是解题关键.16.【分析】设小方原来的速度为x米/分,姨妈的速度为y米/分,小方冲到便利店用了m分钟,根据题意列方程组即可求解.【详解】解:设小方原来的速度为x米/分,姨妈的速度为y米/分,小方冲到便利店用了解析:【分析】设小方原来的速度为x米/分,姨妈的速度为y米/分,小方冲到便利店用了m分钟,根据题意列方程组即可求解.【详解】解:设小方原来的速度为x米/分,姨妈的速度为y米/分,小方冲到便利店用了m分钟.由得:将代入得:,小方买完蟹醋碰到姨妈时与姨妈家的距离就是便利店与姨妈家的距离,即:(米).故答案为:1275.【点睛】此题主要考查根据函数图象信息解应用题,解题的关键是正确读懂函数图象包含的信息.三、解答题17.(1)3;(2)2;(3)0;(4)5-【分析】(1)先利用二次根式的性质化简,然后合并同类二次根式即可;(2)先利用二次根式的性质和立方根化简,然后合并同类二次根式即可;(3)利用平方差公解析:(1)3;(2)2;(3)0;(4)5-【分析】(1)先利用二次根式的性质化简,然后合并同类二次根式即可;(2)先利用二次根式的性质和立方根化简,然后合并同类二次根式即可;(3)利用平方差公式和算术平方根的计算法则求解;(4)利用平方差公式和二次根式的乘法计算法则求解即可.【详解】解:(1);(2);(3);(4).【点睛】本题主要考查了利用二次根式的性质化简,立方根,算术平方根,二次根式的混合计算,乘法公式,熟知相关计算法则是解题的关键.18.绳索OA的长为14.5尺.【分析】设绳索OA的长为x尺,根据题意知,可列出关于的方程,即可求解.【详解】解:由题意可知:尺,设绳索OA的长为x尺,根据题意得,解得.答:绳索OA的解析:绳索OA的长为14.5尺.【分析】设绳索OA的长为x尺,根据题意知,可列出关于的方程,即可求解.【详解】解:由题意可知:尺,设绳索OA的长为x尺,根据题意得,解得.答:绳索OA的长为14.5尺.【点睛】本题主要考查了勾股定理的应用,明确题意,列出方程是解题的关键.19.(1)3;(2)见解析.【解析】【分析】(1)先根据勾股定理算出AB的两条直角边,再结合画图即可解答;(2)根据题意画出图形即可.【详解】解:(1)∵10=12+32∴如图:∴满足解析:(1)3;(2)见解析.【解析】【分析】(1)先根据勾股定理算出AB的两条直角边,再结合画图即可解答;(2)根据题意画出图形即可.【详解】解:(1)∵10=12+32∴如图:∴满足线段的格点共有3个故填3;(2)画图如下(答案不唯一):【点睛】本题主要考查了勾股定理和等腰三角形的定义,掌握勾股定理成为解答本题的关键.20.(1)见解析;(2)见解析【分析】(1)先证,得,又因为,可证;(2)先证,得,又因为,利用边与边的关系,得,又因为,可证得四边形ADCG是平行四边形,又因为,四边形ADCG是矩形.【详解】解析:(1)见解析;(2)见解析【分析】(1)先证,得,又因为,可证;(2)先证,得,又因为,利用边与边的关系,得,又因为,可证得四边形ADCG是平行四边形,又因为,四边形ADCG是矩形.【详解】(1)证明:∵,∴.∵,,∴.∴.∵,∴.(2)证明:∵,∴,由(1)知,∴,∵,∴,∴,∴,∵,,∴,∴,∵,∴四边形ADCG是平行四边形,∵,∴四边形ADCG是矩形.【点睛】本题考查了相似三角形的判定与性质,全等的判定和性质、平行四边形、矩形的判定,能利用相似和全等找到边与边的关系是解题的关键.21.(1)-1,;(2)当,时,是关于1的平衡数,否则不是关于1的平衡数;见解析【解析】【分析】(1)根据所给的例子,可得出平衡数的求法,由此可得出答案;(2)对式子进行化简,得到的关系,再对解析:(1)-1,;(2)当,时,是关于1的平衡数,否则不是关于1的平衡数;见解析【解析】【分析】(1)根据所给的例子,可得出平衡数的求法,由此可得出答案;(2)对式子进行化简,得到的关系,再对进行分情况讨论求解即可.【详解】解:(1)根据题意可得:,解得,故答案为,(2),∴,∴,∴①当均为有理数时,则有,解得:,当时,所以不是关于1的平衡数②当中一个为有理数,另一个为无理数时,,而此时为无理数,故,所以不是关于1的平衡数③当均为无理数时,当时,联立,解得,存在,使得是关于1的平衡数,当且时,不是关于1的平衡数综上可得:当,时,是关于1的平衡数,否则不是关于1的平衡数.【点睛】本题考查了二次根式的加减运算,解答本题的关键是掌握二次根式的化简及同类二次根式的合并,并掌握分类讨论的思想.22.(1)(2)380天,55元【分析】(1)根据函数图像,待定系数法求解析式即可;(2)设需要天,该店能还清所有债务,根据题意,列一元一次不等式,根据二次函数的性质求得最值【详解】(1)当时解析:(1)(2)380天,55元【分析】(1)根据函数图像,待定系数法求解析式即可;(2)设需要天,该店能还清所有债务,根据题意,列一元一次不等式,根据二次函数的性质求得最值【详解】(1)当时,设与的函数关系是为,有函数图像可知,函数图像经过点解得当时,设与的函数关系是为,有函数图像可知,函数图像经过点解得综上所述,(2)设设需要天,该店能还清所有债务,根据题意,当时,当时,的最大值为即,当时,当时,的最大值为即,综上所述,时,即最早需要天还清所有债务,此时服装定价为元【点睛】本题考查了一次函数的应用,二次函数的应用,掌握二次函数的性质是解题的关键.23.(1)30°;(2)不变;45°;(3)见解析【分析】(1)利用图形的旋转与正方形的性质得到△BEC是等边三角形,从而求得=∠DCE=30°.(2)因为△CED是等腰三角形,再利用三角形的内角解析:(1)30°;(2)不变;45°;(3)见解析【分析】(1)利用图形的旋转与正方形的性质得到△BEC是等边三角形,从而求得=∠DCE=30°.(2)因为△CED是等腰三角形,再利用三角形的内角和即可求∠BEF=.(3)过A点与C点添加平行线与垂线,作得四边形AGFH是平行四边形,求得△ABG≌△ADH.从而求得矩形AGFH是正方形,根据正方形的性质证得△AHD≌△DIC,从而得出结论.【详解】(1)证明:在正方形ABCD中,BC=CD.由旋转知,CE=CD,又∵BE=CE,∴BE=CE=BC,∴△BEC是等边三角形,∴∠BCE=60°.又∵∠BCD=90°,∴=∠DCE=30°.(2)∠BEF的度数不发生变化.在△CED中,CE=CD,∴∠CED=∠CDE=,在△CEB中,CE=CB,∠BCE=,∴∠CEB=∠CBE=,∴∠BEF=.(3)过点A作AG∥DF与BF的延长线交于点G,过点A作AH∥GF与DF交于点H,过点C作CI⊥DF于点I易知四边形AGFH是平行四边形,又∵BF⊥DF,∴平行四边形AGFH是矩形.∵∠BAD=∠BGF=90°,∠BPF=∠APD,∴∠ABG=∠ADH.又∵∠AGB=∠AHD=90°,AB=AD,∴△ABG≌△ADH.∴AG=AH,∴矩形AGFH是正方形.∴∠AFH=∠FAH=45°,∴AH=AF∵∠DAH+∠ADH=∠CDI+∠ADH=90°∴∠DAH=∠CDI又∵∠AHD=∠DIC=90°,AD=DC,∴△AHD≌△DIC∴AH=DI,∵DE=2DI,∴DE=2AH=AF【点晴】本题考查正方形的性质和判定、图形的旋转、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(1);(2)①点(3,0),②,(3)点的坐标(7,12)或(4,3).【解析】【分析】(1)根据函数解析式可知OA长,再由即可求出OB长,将B点坐标代入解析式即可求出k值;(2)①由折叠解析:(1);(2)①点(3,0),②,(3)点的坐标(7,12)或(4,3).【解析】【分析】(1)根据函数解析式可知OA长,再由即可求出OB长,将B点坐标代入解析式即可求出k值;(2)①由折叠性质可求得中、,用勾股定理列方程即可求解;②通过构造等腰直角三角形,利用K字形模型全等求出直线上点Q坐标,再由A、Q点坐标用待定系数法求出解析式即可,(3)根据平移性质可知,先求出直线的解析式;再当是以为直角边的直角三角形时,分两种情况求出直线与过A、P点垂直于AP直线的解析式,联立函数解析式得方程求出点坐标,由此得出图形平移方式,由此求出点的坐标.【详解】解:(1)当x=0时,y=6,故点A坐标为A(0,6),∵,∴,∴点B坐标为(8,0),代入得,∴,(2)①如图2-1,由折叠性质可知:,;,∵,∴,设,则,由得,∴,即P点坐标为(3,0)②如图,过点A作AQ⊥AP,并在AQ上取点Q使AQ=AP,过Q点作HQ⊥y轴,∴,∵,∴,∴(AAS)∴HQ=AO=6,AH=OP=3,∴点Q坐标为(6,9),∵△APQ是等腰直角三角形,∴将直线绕点P顺时针旋转得到直线,直线与PQ重合,设经过P(3,0),Q(6,9)的直线解析式为得,解得:,即直线为,(3)由平移性质可知:,由(2)得直线为,∴设直线解析式为,当x=8时,y=0,即,解得:,∴直线解析式为,由(2)得A(0,6)、Q(6,9),则直线AQ解析式为:,I.当AP为直角边,时,如图3-1联立直线和直线AQ得:,解得:,即坐标(12,12),故点B(8,0)向右移动4个单位,向上移动12个单位得到点,∴故点P(3,0)向右移动4个单位,向上移动12个单位得到点(7,12),即当AP
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 14903:2025 EN Refrigerating systems and heat pumps - Qualification of tightness of components and joints
- 2024年统一损失赔偿合同范本一
- 2024年咖啡饮品加盟连锁经营合同范本3篇
- 温度温度显示器课程设计
- 浙大生物制药课程设计
- 油梁式抽油机课程设计
- (标准员)基础知识样卷(共六卷)
- 安全月活动总结试题
- 2024年美术教案课件
- 财务风险管理概述
- 【企业盈利能力探析的国内外文献综述2400字】
- 医学生创新创业基础智慧树知到期末考试答案2024年
- 大学生国家安全教育智慧树知到期末考试答案2024年
- 建筑施工成品保护措施
- 鱼骨图PPT模板精品教案0002
- 教科版三年级上册科学期末测试卷(二)【含答案】
- 冠状动脉造影基本知识-
- 油墨组成和分类
- DB37T 5175-2021 建筑与市政工程绿色施工技术标准
- 自动喷漆线使用说明书
- 科研项目评审评分表
评论
0/150
提交评论