2024届安阳市洹北中学高三第五次模拟考试(数学试题文)试题_第1页
2024届安阳市洹北中学高三第五次模拟考试(数学试题文)试题_第2页
2024届安阳市洹北中学高三第五次模拟考试(数学试题文)试题_第3页
2024届安阳市洹北中学高三第五次模拟考试(数学试题文)试题_第4页
2024届安阳市洹北中学高三第五次模拟考试(数学试题文)试题_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安阳市洹北中学高三第五次模拟考试(数学试题文)试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列满足,且成等比数列.若的前n项和为,则的最小值为()A. B. C. D.2.函数的图象大致是()A. B.C. D.3.执行如图所示的程序框图,则输出的()A.2 B.3 C. D.4.已知正项等比数列的前项和为,且,则公比的值为()A. B.或 C. D.5.直线与抛物线C:交于A,B两点,直线,且l与C相切,切点为P,记的面积为S,则的最小值为A. B. C. D.6.如图所示,三国时代数学家在《周脾算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为,若向弦图内随机抛掷200颗米粒(大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为()A.20 B.27 C.54 D.647.点在曲线上,过作轴垂线,设与曲线交于点,,且点的纵坐标始终为0,则称点为曲线上的“水平黄金点”,则曲线上的“水平黄金点”的个数为()A.0 B.1 C.2 D.38.的展开式中,项的系数为()A.-23 B.17 C.20 D.639.函数(其中,,)的图象如图,则此函数表达式为()A. B.C. D.10.已知复数满足,则=()A. B.C. D.11.已知向量,(其中为实数),则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,则________.(填“>”或“=”或“<”).14.已知过点的直线与函数的图象交于、两点,点在线段上,过作轴的平行线交函数的图象于点,当∥轴,点的横坐标是15.在平面直角坐标系中,已知点,,若圆上有且仅有一对点,使得的面积是的面积的2倍,则的值为_______.16.某高校开展安全教育活动,安排6名老师到4个班进行讲解,要求1班和2班各安排一名老师,其余两个班各安排两名老师,其中刘老师和王老师不在一起,则不同的安排方案有________种.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中国,不仅是购物,而且从共享单车到医院挂号再到公共缴费,日常生活中几乎全部领域都支持手机支付.出门不带现金的人数正在迅速增加。中国人民大学和法国调查公司益普索合作,调查了腾讯服务的6000名用户,从中随机抽取了60名,统计他们出门随身携带现金(单位:元)如茎叶图如示,规定:随身携带的现金在100元以下(不含100元)的为“手机支付族”,其他为“非手机支付族”.(1)根据上述样本数据,将列联表补充完整,并判断有多大的把握认为“手机支付族”与“性别”有关?(2)用样本估计总体,若从腾讯服务的用户中随机抽取3位女性用户,这3位用户中“手机支付族”的人数为,求随机变量的期望和方差;(3)某商场为了推广手机支付,特推出两种优惠方案,方案一:手机支付消费每满1000元可直减100元;方案二:手机支付消费每满1000元可抽奖2次,每次中奖的概率同为,且每次抽奖互不影响,中奖一次打9折,中奖两次打8.5折.如果你打算用手机支付购买某样价值1200元的商品,请从实际付款金额的数学期望的角度分析,选择哪种优惠方案更划算?附:0.0500.0100.0013.8416.63510.82818.(12分)已知函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若不等式对任意实数恒成立,求实数的取值范围.19.(12分)已知,,且.(1)求的最小值;(2)证明:.20.(12分)如图,已知四棱锥,平面,底面为矩形,,为的中点,.(1)求线段的长.(2)若为线段上一点,且,求二面角的余弦值.21.(12分)已知均为正实数,函数的最小值为.证明:(1);(2).22.(10分)如图,四棱锥中,四边形是矩形,,为正三角形,且平面平面,、分别为、的中点.(1)证明:平面平面;(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

利用等比中项性质可得等差数列的首项,进而求得,再利用二次函数的性质,可得当或时,取到最小值.【详解】根据题意,可知为等差数列,公差,由成等比数列,可得,∴,解得.∴.根据单调性,可知当或时,取到最小值,最小值为.故选:D.【点睛】本题考查等差数列通项公式、等比中项性质、等差数列前项和的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意当或时同时取到最值.2、B【解析】

根据函数表达式,把分母设为新函数,首先计算函数定义域,然后求导,根据导函数的正负判断函数单调性,对应函数图像得到答案.【详解】设,,则的定义域为.,当,,单增,当,,单减,则.则在上单增,上单减,.选B.【点睛】本题考查了函数图像的判断,用到了换元的思想,简化了运算,同学们还可以用特殊值法等方法进行判断.3、B【解析】

运行程序,依次进行循环,结合判断框,可得输出值.【详解】起始阶段有,,第一次循环后,,第二次循环后,,第三次循环后,,第四次循环后,,所有后面的循环具有周期性,周期为3,当时,再次循环输出的,,此时,循环结束,输出,故选:B【点睛】本题主要考查程序框图的相关知识,经过几次循环找出规律是关键,属于基础题型.4、C【解析】

由可得,故可求的值.【详解】因为,所以,故,因为正项等比数列,故,所以,故选C.【点睛】一般地,如果为等比数列,为其前项和,则有性质:(1)若,则;(2)公比时,则有,其中为常数且;(3)为等比数列()且公比为.5、D【解析】

设出坐标,联立直线方程与抛物线方程,利用弦长公式求得,再由点到直线的距离公式求得到的距离,得到的面积为,作差后利用导数求最值.【详解】设,,联立,得则,则由,得设,则,则点到直线的距离从而.令当时,;当时,故,即的最小值为本题正确选项:【点睛】本题考查直线与抛物线位置关系的应用,考查利用导数求最值的问题.解决圆锥曲线中的面积类最值问题,通常采用构造函数关系的方式,然后结合导数或者利用函数值域的方法来求解最值.6、B【解析】

设大正方体的边长为,从而求得小正方体的边长为,设落在小正方形内的米粒数大约为,利用概率模拟列方程即可求解。【详解】设大正方体的边长为,则小正方体的边长为,设落在小正方形内的米粒数大约为,则,解得:故选:B【点睛】本题主要考查了概率模拟的应用,考查计算能力,属于基础题。7、C【解析】

设,则,则,即可得,设,利用导函数判断的零点的个数,即为所求.【详解】设,则,所以,依题意可得,设,则,当时,,则单调递减;当时,,则单调递增,所以,且,有两个不同的解,所以曲线上的“水平黄金点”的个数为2.故选:C【点睛】本题考查利用导函数处理零点问题,考查向量的坐标运算,考查零点存在性定理的应用.8、B【解析】

根据二项式展开式的通项公式,结合乘法分配律,求得的系数.【详解】的展开式的通项公式为.则①出,则出,该项为:;②出,则出,该项为:;③出,则出,该项为:;综上所述:合并后的项的系数为17.故选:B【点睛】本小题考查二项式定理及展开式系数的求解方法等基础知识,考查理解能力,计算能力,分类讨论和应用意识.9、B【解析】

由图象的顶点坐标求出,由周期求出,通过图象经过点,求出,从而得出函数解析式.【详解】解:由图象知,,则,图中的点应对应正弦曲线中的点,所以,解得,故函数表达式为.故选:B.【点睛】本题主要考查三角函数图象及性质,三角函数的解析式等基础知识;考查考生的化归与转化思想,数形结合思想,属于基础题.10、B【解析】

利用复数的代数运算法则化简即可得到结论.【详解】由,得,所以,.故选:B.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,属于基础题.11、A【解析】

结合向量垂直的坐标表示,将两个条件相互推导,根据能否推导的情况判断出充分、必要条件.【详解】由,则,所以;而当,则,解得或.所以“”是“”的充分不必要条件.故选:A【点睛】本小题考查平面向量的运算,向量垂直,充要条件等基础知识;考查运算求解能力,推理论证能力,应用意识.12、D【解析】

利用,根据诱导公式进行化简,可得,然后利用两角差的正弦定理,可得结果.【详解】由所以,所以原式所以原式故故选:D【点睛】本题考查诱导公式以及两角差的正弦公式,关键在于掌握公式,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

注意到,故只需比较与1的大小即可.【详解】由已知,,故有.又由,故有.故答案为:.【点睛】本题考查对数式比较大小,涉及到换底公式的应用,考查学生的数学运算能力,是一道中档题.14、【解析】

通过设出A点坐标,可得C点坐标,通过∥轴,可得B点坐标,于是再利用可得答案.【详解】根据题意,可设点,则,由于∥轴,故,代入,可得,即,由于在线段上,故,即,解得.15、【解析】

写出所在直线方程,求出圆心到直线的距离,结合题意可得关于的等式,求解得答案.【详解】解:直线的方程为,即.圆的圆心到直线的距离,由的面积是的面积的2倍的点,有且仅有一对,可得点到的距离是点到直线的距离的2倍,可得过圆的圆心,如图:由,解得.故答案为:.【点睛】本题考查直线和圆的位置关系以及点到直线的距离公式应用,考查数形结合的解题思想方法,属于中档题.16、156【解析】

先考虑每班安排的老师人数,然后计算出对应的方案数,再考虑刘老师和王老师在同一班级的方案数,两者作差即可得到不同安排的方案数.【详解】安排6名老师到4个班则每班老师人数为1,1,2,2,共有种,刘老师和王老师分配到一个班,共有种,所以种.故答案为:.【点睛】本题考查排列组合的综合应用,难度一般.对于分组的问题,首先确定每组的数量,对于其中特殊元素,可通过“正难则反”的思想进行分析.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)列联表见解析,99%;(2),;(3)第二种优惠方案更划算.【解析】

(1)根据已知数据得出列联表,再根据独立性检验得出结论;(2)有数据可知,女性中“手机支付族”的概率为,知服从二项分布,即,可求得其期望和方差;(3)若选方案一,则需付款元,若选方案二,设实际付款元,,则的取值为1200,1080,1020,求出实际付款的期望,再比较两个方案中的付款的金额的大小,可得出选择的方案.【详解】(1)由已知得出联列表:,所以,有99%的把握认为“手机支付族”与“性别”有关;(2)有数据可知,女性中“手机支付族”的概率为,,;(3)若选方案一,则需付款元若选方案二,设实际付款元,,则的取值为1200,1080,1020,,,,选择第二种优惠方案更划算【点睛】本题考查独立性检验,二项分布的期望和方差,以及由期望值确定决策方案,属于中档题.18、(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)分三种情况讨论,分别求解不等式组,然后求并集即可得不等式的解集;(Ⅱ)根据绝对值不等式的性质可得,不等式对任意实数恒成立,等价于,解不等式即可求的取值范围.试题解析:(Ⅰ)当时,即,①当时,得,所以;②当时,得,即,所以;③当时,得成立,所以.故不等式的解集为.(Ⅱ)因为,由题意得,则,解得,故的取值范围是.19、(1)(2)证明见解析【解析】

(1)利用基本不等式即可求得最小值;(2)关键是配凑系数,进而利用基本不等式得证.【详解】(1),当且仅当“”时取等号,故的最小值为;(2),当且仅当时取等号,此时.故.【点睛】本题主要考查基本不等式的运用,属于基础题.20、(1)的长为4(2)【解析】

(1)分别以所在直线为轴,建立如图所示的空间直角坐标系,设,根据向量垂直关系计算得到答案.(2)计算平面的法向量为,为平面的一个法向量,再计算向量夹角得到答案.【详解】(1)分别以所在直线为轴,建立如图所示的空间直角坐标系.设,则,所以.,因为,所以,即,解得,所以的长为4.(2)因为,所以,又,故.设为平面的法向量,则即取,解得,所以为平面的一个法向量.显然,为平面的一个法向量,则,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论