版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
特训02二次函数中考真题压轴题(江苏20222023年)一、解答题1.(2023·江苏连云港·统考中考真题)如图,在平面直角坐标系中,抛物线的顶点为.直线过点,且平行于轴,与抛物线交于两点(在的右侧).将抛物线沿直线翻折得到抛物线,抛物线交轴于点,顶点为.
(1)当时,求点的坐标;(2)连接,若为直角三角形,求此时所对应的函数表达式;(3)在(2)的条件下,若的面积为两点分别在边上运动,且,以为一边作正方形,连接,写出长度的最小值,并简要说明理由.2.(2023·江苏扬州·统考中考真题)在平面直角坐标系中,已知点A在y轴正半轴上.
(1)如果四个点中恰有三个点在二次函数(a为常数,且)的图象上.①________;②如图1,已知菱形的顶点B、C、D在该二次函数的图象上,且轴,求菱形的边长;③如图2,已知正方形的顶点B、D在该二次函数的图象上,点B、D在y轴的同侧,且点B在点D的左侧,设点B、D的横坐标分别为m、n,试探究是否为定值.如果是,求出这个值;如果不是,请说明理由.(2)已知正方形的顶点B、D在二次函数(a为常数,且)的图象上,点B在点D的左侧,设点B、D的横坐标分别为m、n,直接写出m、n满足的等量关系式.3.(2023·江苏苏州·统考中考真题)如图,二次函数的图像与轴分别交于点(点A在点的左侧),直线是对称轴.点在函数图像上,其横坐标大于4,连接,过点作,垂足为,以点为圆心,作半径为的圆,与相切,切点为.
(1)求点的坐标;(2)若以的切线长为边长的正方形的面积与的面积相等,且不经过点,求长的取值范围.4.(2023·江苏徐州·统考中考真题)如图,在平而直角坐标系中,二次函数的图象与轴分别交于点,顶点为.连接,将线段绕点按顺时针方向旋转得到线段,连接.点分别在线段上,连接与交于点.
(1)求点的坐标;(2)随着点在线段上运动.①的大小是否发生变化?请说明理由;②线段的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由;(3)当线段的中点在该二次函数的因象的对称轴上时,的面积为.5.(2023·江苏无锡·统考中考真题)已知二次函数的图像与轴交于点,且经过点和点.(1)请直接写出,的值;(2)直线交轴于点,点是二次函数图像上位于直线下方的动点,过点作直线的垂线,垂足为.①求的最大值;②若中有一个内角是的两倍,求点的横坐标.6.(2023·江苏宿迁·统考中考真题)规定:若函数的图像与函数的图像有三个不同的公共点,则称这两个函数互为“兄弟函数”,其公共点称为“兄弟点”.(1)下列三个函数①;②;③,其中与二次函数互为“兄弟函数”的是________(填写序号);(2)若函数与互为“兄弟函数”,是其中一个“兄弟点”的横坐标.①求实数a的值;②直接写出另外两个“兄弟点”的横坐标是________、________;(3)若函数(m为常数)与互为“兄弟函数”,三个“兄弟点”的横坐标分别为、、,且,求的取值范围.7.(2023·江苏南通·统考中考真题)定义:平面直角坐标系中,点,点,若,,其中为常数,且,则称点是点的“级变换点”.例如,点是点的“级变换点”.(1)函数的图象上是否存在点的“级变换点”?若存在,求出的值;若不存在,说明理由;(2)点与其“级变换点”分别在直线,上,在,上分别取点,.若,求证:;(3)关于x的二次函数的图象上恰有两个点,这两个点的“1级变换点”都在直线上,求n的取值范围.8.(2023·江苏·统考中考真题)如图,二次函数的图像与x轴相交于点,其顶点是C.
(1)_______;(2)D是第三象限抛物线上的一点,连接OD,;将原抛物线向左平移,使得平移后的抛物线经过点D,过点作x轴的垂线l.已知在l的左侧,平移前后的两条抛物线都下降,求k的取值范围;(3)将原抛物线平移,平移后的抛物线与原抛物线的对称轴相交于点Q,且其顶点P落在原抛物线上,连接PC、QC、PQ.已知是直角三角形,求点P的坐标.9.(2023·江苏·统考中考真题)已知二次函数(为常数).(1)该函数图像与轴交于两点,若点坐标为,①则的值是_________,点的坐标是_________;②当时,借助图像,求自变量的取值范围;(2)对于一切实数,若函数值总成立,求的取值范围(用含的式子表示);(3)当时(其中为实数,),自变量的取值范围是,求和的值以及的取值范围.10.(2023·江苏镇江·统考中考真题)已知,在平面直角坐标系中,点A的坐标为,点B的坐标为,点C与点B关于原点对称,直线分别与y轴交于点E,F,点F在点E的上方,.
(1)分别求点E,F的纵坐标(用含m,n的代数式表示),并写出m的取值范围.(2)求点B的横坐标m,纵坐标n之间的数量关系.(用含m的代数式表示n)(3)将线段绕点顺时针旋转,E,F的对应点分别是,.当线段与点B所在的某个函数图象有公共点时,求m的取值范围.11.(2023·江苏盐城·统考中考真题)定义:若一次函数的图象与二次函数的图象有两个交点,并且都在坐标轴上,则称二次函数为一次函数的轴点函数.【初步理解】(1)现有以下两个函数:①;②,其中,_________为函数的轴点函数.(填序号)【尝试应用】(2)函数(为常数,)的图象与轴交于点,其轴点函数与轴的另一交点为点.若,求的值.【拓展延伸】(3)如图,函数(为常数,)的图象与轴、轴分别交于,两点,在轴的正半轴上取一点,使得.以线段的长度为长、线段的长度为宽,在轴的上方作矩形.若函数(为常数,)的轴点函数的顶点在矩形的边上,求的值.
12.(2022·江苏无锡·统考中考真题)已知二次函数图像的对称轴与x轴交于点A(1,0),图像与y轴交于点B(0,3),C、D为该二次函数图像上的两个动点(点C在点D的左侧),且.(1)求该二次函数的表达式;(2)若点C与点B重合,求tan∠CDA的值;(3)点C是否存在其他的位置,使得tan∠CDA的值与(2)中所求的值相等?若存在,请求出点C的坐标;若不存在,请说明理由.13.(2022·江苏泰州·统考中考真题)定义:对于一次函数,我们称函数为函数的“组合函数”.(1)若m=3,n=1,试判断函数是否为函数的“组合函数”,并说明理由;(2)设函数与的图像相交于点P.①若,点P在函数的“组合函数”图像的上方,求p的取值范围;②若p≠1,函数的“组合函数”图像经过点P.是否存在大小确定的m值,对于不等于1的任意实数p,都有“组合函数”图像与x轴交点Q的位置不变?若存在,请求出m的值及此时点Q的坐标;若不存在,请说明理由.14.(2022·江苏盐城·统考中考真题)【发现问题】小明在练习簿的横线上取点为圆心,相邻横线的间距为半径画圆,然后半径依次增加一个间距画同心圆,描出了同心圆与横线的一些交点,如图1所示,他发现这些点的位置有一定的规律.【提出问题】小明通过观察,提出猜想:按此步骤继续画圆描点,所描的点都在某二次函数图像上.(1)【分析问题】小明利用已学知识和经验,以圆心为原点,过点的横线所在直线为轴,过点且垂直于横线的直线为轴,相邻横线的间距为一个单位长度,建立平面直角坐标系,如图2所示.当所描的点在半径为5的同心圆上时,其坐标为___________.(2)【解决问题】请帮助小明验证他的猜想是否成立.(3)【深度思考】小明继续思考:设点,为正整数,以为直径画,是否存在所描的点在上.若存在,求的值;若不存在,说明理由.15.(2022·江苏南通·统考中考真题)定义:函数图像上到两坐标轴的距离都不大于的点叫做这个函数图像的“n阶方点”.例如,点是函数图像的“阶方点”;点是函数图像的“2阶方点”.(1)在①;②;③三点中,是反比例函数图像的“1阶方点”的有___________(填序号);(2)若y关于x的一次函数图像的“2阶方点”有且只有一个,求a的值;(3)若y关于x的二次函数图像的“n阶方点”一定存在,请直接写出n的取值范围.16.(2022·江苏镇江·统考中考真题)一次函数的图像与轴交于点,二次函数的图像经过点、原点和一次函数图像上的点.(1)求这个二次函数的表达式;(2)如图1,一次函数与二次函数的图像交于点、(),过点作直线轴于点,过点作直线轴,过点作于点.①_________,_________(分别用含的代数式表示);②证明:;(3)如图2,二次函数的图像是由二次函数的图像平移后得到的,且与一次函数的图像交于点、(点在点的左侧),过点作直线轴,过点作直线轴,设平移后点、的对应点分别为、,过点作于点,过点作于点.①与相等吗?请说明你的理由;②若,求的值.17.(2022·江苏淮安·统考中考真题)如图(1),二次函数的图像与轴交于、两点,与轴交于点,点的坐标为,点的坐标为,直线经过、两点.(1)求该二次函数的表达式及其图像的顶点坐标;(2)点为直线上的一点,过点作轴的垂线与该二次函数的图像相交于点,再过点作轴的垂线与该二次函数的图像相交于另一点,当时,求点的横坐标;(3)如图(2),点关于轴的对称点为点,点为线段上的一个动点,连接,点为线段上一点,且,连接,当的值最小时,直接写出的长.18.(2022·江苏宿迁·统考中考真题)如图,二次函数与轴交于(0,0),(4,0)两点,顶点为,连接、,若点是线段上一动点,连接,将沿折叠后,点落在点的位置,线段与轴交于点,且点与、点不重合.(1)求二次函数的表达式;(2)①求证:;②求;(3)当时,求直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 解除建设合同协议
- 公司对公短期借款合同格式
- 灯具供应协议
- 英文版设备采购合同
- 家居家具选购合同
- 质量保证书质量领先服务至上
- 聘用合同补充协议样本
- 严谨作风自觉加班
- 服务推广合作合同书
- 招标前期物业服务合同
- 2024年初中七年级英语上册单元写作范文(新人教版)
- 新编苏教版一年级科学上册实验报告册(典藏版)
- 医学免疫学-医学检验专业学习通超星期末考试答案章节答案2024年
- 独立基础土方开挖施工方案
- 【基于单片机的电子密码锁设计(论文)10000字】
- 肿瘤病人常见症状护理
- 瑜伽基础知识题库单选题100道及答案解析
- 广东省广州市2024年中考数学真题试卷(含答案)
- 2024年资格考试-注册质量经理考试近5年真题附答案
- 浙江省台州市2023-2024学年七年级上学期期末数学试题(含答案)
- 2024年秋季国家开放大学《形势与政策》大作业及答案
评论
0/150
提交评论