2024年浙江省金华市义乌市九年级数学第一学期开学联考模拟试题【含答案】_第1页
2024年浙江省金华市义乌市九年级数学第一学期开学联考模拟试题【含答案】_第2页
2024年浙江省金华市义乌市九年级数学第一学期开学联考模拟试题【含答案】_第3页
2024年浙江省金华市义乌市九年级数学第一学期开学联考模拟试题【含答案】_第4页
2024年浙江省金华市义乌市九年级数学第一学期开学联考模拟试题【含答案】_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2024年浙江省金华市义乌市九年级数学第一学期开学联考模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列命题的逆命题能成立的有()①两条直线平行,内错角相等;②如果两个实数相等,那么它们的绝对值相等;③全等三角形的对应角相等;④在角的内部,到角的两边距离相等的点在角的平分线上.A.4个 B.3个 C.2个 D.1个2、(4分)以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A. B. C. D.3、(4分)如图,在矩形ABCD中,AB=8,BC=6,EF经过对角线的交点O,则图中阴影部分的面积是()A.6 B.12 C.15 D.244、(4分)某服装制造厂要在开学前赶制套校服,为了尽快完成任务,厂领导合理调配加强第一线人力,使每天完成的校服比原计划多,结果提前天完成任务,问:原计划每天能完成多少套校服?设原来每天完成校服套,则可列出方程()A. B.C. D.5、(4分)若y关于x的函数y=(m-2)x+n是正比例函数,则m,n应满足的条件是()A.m≠2且n=0 B.m=2且n=0 C.m≠2 D.n=06、(4分)如图,已知△ABC和△PBD都是正方形网格上的格点三角形(顶点为网格线的交点),要使ΔABC∽ΔPBD,则点P的位置应落在A.点上 B.点上 C.点上 D.点上7、(4分)某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学均时间是()A.4 B.3 C.2 D.18、(4分)下列运算正确的是(

)A. B.=1C. D..二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)多项式分解因式的结果是______.10、(4分)若x-y=,xy=,则代数式(x-1)(y+1)的值等于_____.11、(4分)如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是______.12、(4分)计算:(−)2=________;=_________.13、(4分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集是_____________。三、解答题(本大题共5个小题,共48分)14、(12分)如图1,△ABC中,∠ABC=90°,AB=1,BC=2,将线段BC绕点C顺时旋转90°得到线段CD,连接AD.(1)说明△ACD的形状,并求出△ACD的面积;(2)把等腰直角三角板按如图2的方式摆放,顶点E在CB边上,顶点F在DC的延长线上,直角顶点与点C重合.从A,B两题中任选一题作答:A.如图3,连接DE,BF,①猜想并证明DE与BF之间的关系;②将三角板绕点C逆时针旋转α(0°<α<90°),直接写出DE与BF之间的关系.B.将图2中的三角板绕点C逆时针旋转α(0<α<360°),如图4所示,连接BE,DF,连接点C与BE的中点M,①猜想并证明CM与DF之间的关系;②当CE=1,CM=72时,请直接写出α的值15、(8分)(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下列两题:①如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,则DE=.②如图4,在△ABC中,∠BAC=45°,AD⊥BC,且BD=2,AD=6,求△ABC的面积.16、(8分)已知:如图,四边形中,、、、分别为、、和的中点,且.求证:和互相垂直且平分.17、(10分)如图,在正方形网格中每个小正方形的边长为1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)在图(1)网格中画出长为的线段AB.(2)在图(2)网格中画出一个腰长为,面积为3的等腰18、(10分)甲、乙两台机床同时生产一种零件,在5天中,两台机床每天出次品的数量如下表,甲10423乙32122请根据上述数据判断,在这5天中,哪台机床出次品的波动较小?并说明理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)七边形的内角和是__________.20、(4分)矩形的一边长是3.6㎝,两条对角线的夹角为60º,则矩形对角线长是___________.21、(4分)将一副三角尺如图所示叠放在一起,若AB=8cm,则阴影部分的面积是_____cm1.22、(4分)在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是_____.23、(4分)某种数据方差的计算公式是,则该组数据的总和为_________________.二、解答题(本大题共3个小题,共30分)24、(8分)已知点分别在菱形的边上滑动(点不与重合),且.(1)如图1,若,求证:;(2)如图2,若与不垂直,(1)中的结论还成立吗?若成立,请证明,若不成立,说明理由;(3)如图3,若,请直接写出四边形的面积.25、(10分)三五三七鞋厂为了了解初中学生穿鞋的鞋号情况,对红华中学初二(1)班的20名男生所穿鞋号统计如下表:鞋号23.52424.52525.526人数344711(1)写出男生鞋号数据的平均数,中位数,众数;(2)在平均数,中位数和众数中,鞋厂最感兴趣的是什么?26、(12分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】

写出各个命题的逆命题后判断真假即可.【详解】解:①两条直线平行,内错角相等的逆命题是内错角相等,两直线平行,成立;②如果两个实数相等,那么它们的绝对值相等的逆命题是绝对值相等的两个实数相等,不成立;③全等三角形的对应角相等的逆命题为对应角相等的三角形全等,不成立;④在角的内部,到角的两边距离相等的点在角的平分线上的逆命题是角平分线上的点到角的两边的距离相等,成立,成立的有2个,故选:C.考查了命题与定理的知识,解题的关键是能够写出一个命题的逆命题,难度不大.2、B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,只有选项B符合条件.故选B.3、B【解析】试题解析:在△AOE和△COF中,∠EAO=∠FCO,AO=CO,∠COF=∠EOA,∴△AOE≌△COF,则△AOE和△COF面积相等,∴阴影部分的面积与△CDO的面积相等,又∵矩形对角线将矩形分成面积相等的四部分,∴阴影部分的面积为=1.故选B.考点:矩形的性质.4、C【解析】

由实际每天完成的校服比原计划多得到实际每天完成校服x(1+20%)套,再根据提前4天完成任务即可列出方程.【详解】∵原来每天完成校服套,实际每天完成的校服比原计划多,∴实际每天完成校服x(1+20%)套,由题意得,故选:C.此题考查分式方程的实际应用,正确理解题意是解题的关键.5、A【解析】试题解析:若y关于x的函数是正比例函数,解得:故选A.6、B【解析】

由图可知∠BPD一定是钝角,若要△ABC∽△PBD,则PB、PD与AB、AC的比值必须相等,可据此进行判断.【详解】解:由图知:∠BAC是钝角,又△ABC∽△PBD,则∠BPD一定是钝角,∠BPD=∠BAC,又BA=1,AC=1,∴BA:AC=1:,∴BP:PD=1:或BP:PD=:1,只有P1符合这样的要求,故P点应该在P1.

故选B.此题考查了相似三角形的性质,以及勾股定理的运用,相似三角形的对应角相等,对应边成比例,书写相似三角形时,对应顶点要对应.熟练掌握相似三角形的性质是解本题的关键7、B【解析】

根据题意得:(1×1+2×2+4×3+2×4+1×5)÷10=3(小时),答:这10名学生周末学均时间是3小时;故选B.8、D【解析】【分析】根据二次根式加减法则进行分析.同类二次根式才可合并.【详解】A.,不是同类二次根式,不能合并,故本选项错误;B.=,故本选项错误;C.,不是同类二次根式,不能合并,故本选项错误;D..故本选项正确.故选:D【点睛】本题考核知识点:二次根式的加减.解题关键点:合并同类二次根式.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

先提出公因式a,再利用平方差公式因式分解.【详解】解:a3-4a=a(a2-4)=a(a+2)(a-2).

故答案为a(a+2)(a-2).本题考查提公因式法和公式法进行因式分解,解题的关键是熟记提公因式法和公式法.10、2-2【解析】

解:∵=,原式故答案为:11、菱形【解析】

由条件可知AB∥CD,AD∥BC,再证明AB=BC,即可解决问题.【详解】过点D作DE⊥AB于E,DF⊥BC于F.∵两把直尺的对边分别平行,即:AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵两把直尺的宽度相等,∴DE=DF.又∵平行四边形ABCD的面积=AB•DE=BC•DF,∴AB=BC,∴平行四边形ABCD为菱形.故答案为:菱形.本题主要考查菱形的判定定理,添加辅助线,利用平行四边形的面积法证明平行四边形的邻边相等,是解题的关键.12、5π-1【解析】

根据二次根式的性质计算即可.【详解】解:.故答案为:5,π-1.本题考查的是二次根式的化简,掌握二次根式的性质是解题的关键.13、x<【解析】

先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.【详解】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,解得m,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<.此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题(本大题共5个小题,共48分)14、(1)△ACD是等腰三角形,SΔACD=2;(2)A①DE=BF,DE⊥BF,见解析;②DE=BF,DE⊥【解析】

(1)过点A作AE⊥CD于点E,则∠AEC=∠AED=90°.可证四边形ABCE是矩形,从而AE=BC=2,AB=CE=1,可得AE垂直平分CD,从而△ACD是等腰三角形;再根据三角形的面积公式计算即可;(2)A.①根据“SAS”可证△BCF≌△DCE,从而DE=BF,∠CBF=∠CDE,延长DE交BF于点H,由∠DEC+∠CDE=90°,可证∠BEH+∠CBF=90°,所以∠BHE=90°,即DE⊥BF;②证明方法同①;B.①延长MC交DF于点N,延长CM至点G,使CM=MG,连接EG,根据“SAS”证明△MEG≌△MBC,从而BC=GE,BC∥GE,然后再证明△ECG≌△CFD,可得CG=DF,∠ECG=∠CFD,进而可证明结论成立;②作FH⊥DC,交DC的延长线与点H,设FH=x,CH=y.由勾股定理列方程组求出x与y的值,根据含30°角的直角三角形的性质可知∠FCH=30°,进而可求α=60°或300°.【详解】△ACD是等腰三角形,理由如下:过点A作AE⊥CD于点E,则∠AEC=∠AED=90°.又∵∠ABC=90°,∠BCE=90°,∴四边形ABCE是矩形,∴AE=BC=2,AB=CE=1,∴CD=1,∴AE垂直平分CD,∴AC=AD,∴△ACD是等腰三角形,∴S(2)A:①DE=BF,DE⊥BF.理由如下:由旋转可知,BC=CD=2,∠BCD=90°,∵等腰直角△CEF顶点E在CB边上,顶点F在DC的延长线上,∴CE=CF,∠BCF=∠DCE=90°.在△BCF和△DCE中,BC=DC,∠BCF=∠DCE,CF=CE,∴△BCF≌△DCE(SAS),∴DE=BF,∠CBF=∠CDE,延长DE交BF于点H,∵∠DEC+∠CDE=90°,∠DEC=∠BEH,∴∠BEH+∠CBF=90°,∴∠BHE=90°,∴DE⊥BF;②DE=BF,DE⊥BF.证明方法同①;B:①CM=12DF,CM⊥DF.延长MC交DF于点N,延长CM至点G,使CM=MG,连接EG,∵M是BE的中点,∴ME=MB.在△MEG和△MBC中,ME=MB,∠EMG=∠BMC,MG=MC,∴△MEG≌△MBC(SAS),∴CM=MG=12CG,BC=GE,BC∥GE∵BC=CD,∴EG=CD.由旋转得∠BCE=α,∵BC∥GE,∴∠CEG=180°-α,∵∠DCF=360°-∠ECF-∠BCE-∠BCD=180°-α,∴∠CEG=∠DCF,在△ECG和△CFD中,CE=CF,∠CEG=∠DCF,∠CEG=∠DCF,∴△ECG≌△CFD(SAS),∴CG=DF,∠ECG=∠CFD,∵MG=MC,∴MC=12DF∵∠ECF=90°,∴∠ECG+∠FCN=∠FCD+∠FCN=90°,∴∠CNF=90°,∴DE⊥BF;②作FH⊥DC,交DC的延长线与点H,设FH=x,CH=y.∵CM=72,∴DF=CG=7∴x2+y∴FH=12∴∠FCH=30°,∴∠FCD=120°,∴∠BCE=60°,∴α=60°或300°.本题考查了旋转的性质,矩形的判定与性质,线段垂直平分线的判定与性质,全等三角形的判定与性质,勾股定理,含30°角的直角三角形的性质,以及分类讨论的数学思想,正确作出辅助线是解答本题的关键.15、(1)见解析;(2)见解析;(4)①DE=4;②△ABC的面积是1.【解析】

(1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;(2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(4)①过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;②作∠EAB=∠BAD,∠GAC=∠DAC,过B作AE的垂线,垂足是E,过C作AG的垂线,垂足是G,BE和GC相交于点F,BF=2-2=4,设GC=x,则CD=GC=x,FC=2-x,BC=2+x.在直角△BCF中利用勾股定理求得CD的长,则三角形的面积即可求解.【详解】(1)证明:如图1,在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)证明:如图2,延长AD至F,使DF=BE,连接CF,由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(4)①过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形.AE=AB﹣BE=12﹣4=8,设DF=x,则AD=12﹣x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中,AE2+AD2=DE2,则82+(12﹣x)2=(4+x)2,解得:x=2.则DE=4+2=4.故答案是:4;②作∠EAB=∠BAD,∠GAC=∠DAC,过B作AE的垂线,垂足是E,过C作AG的垂线,垂足是G,BE和GC相交于点F,则四边形AEFG是正方形,且边长=AD=2,BE=BD=2,则BF=2﹣2=4,设GC=x,则CD=GC=x,FC=2﹣x,BC=2+x.在直角△BCF中,BC2=BF2+FC2,则(2+x)2=42+x2,解得:x=4.则BC=2+4=5,则△ABC的面积是:AD•BC=×2×5=1.本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.16、见解析.【解析】

本题利用三角形的中位线定理得到了EH=EF=FG=GH,继而由“菱形的对角线互相垂直”得到结论.【详解】证明:在△ABD中,∵、分别为AD、BD的中点,∴,,同理:在△ABC中,,在△BDC中,,∴,∴四边形EFGH为平行四边形∵∴EF=FG∴四边形EFGH是菱形∴EG和FH互相垂直平分本题考查了三角形中位线定理和菱形的判定,解题的关键是利用三角形中位线定理得到证明菱形的条件.17、(1)见解析;(2)见解析.【解析】

(1)根据勾股定理可得直角边长为2和1的直角三角形斜边长为;

(2)根据勾股定理可得直角边长为3和1的直角三角形斜边长为,再根据面积为3确定△DEF.【详解】解如图所示图(1)图(2)此题主要考查了勾股定理的应用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.18、乙机床出次品的波动较小,理由见解析.【解析】

根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.【详解】解:乙机床出次品的波动较小,∵甲,乙,∴甲.乙,由甲乙知,乙机床出次品的波动较小.本题考查了平均数和方差,一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.一、填空题(本大题共5个小题,每小题4分,共20分)19、900°【解析】

由n边形的内角和是:180°(n−2),将n=7代入即可求得答案.【详解】解:七边形的内角和是:180°×(7−2)=900°.

故答案为:900°.此题考查了多边形的内角和公式.此题比较简单,注意熟记公式:n边形的内角和为180°(n−2)实际此题的关键.20、7.2cm或cm【解析】①边长3.6cm为短边时,

∵四边形ABCD为矩形,

∴OA=OB,

∵两对角线的夹角为60°,

∴△AOB为等边三角形,

∴OA=OB=AB=3.6cm,

∴AC=BD=2OA=7.2cm;

②边长3.6cm为长边时,

∵四边形ABCD为矩形

∴OA=OB,

∵两对角线的夹角为60°,

∴△AOB为等边三角形,

∴OA=OB=AB,BD=2OB,∠ABD=60°,

∴OB=AB=,∴BD=;故答案是:7.2cm或cm.21、2【解析】

根据含30度角的直角三角形的性质求出AC的长,然后证明∠AFC=45°,得到CF的长,再利用三角形面积公式计算即可.【详解】解:∵∠B=30°,∠ACB=90°,∠E=90°,AB=2cm,∴AC=4cm,BC∥ED,∴∠AFC=∠D=45°,∴AC=CF=4cm,∴阴影部分的面积=×4×4=2(cm1),故答案为:2.本题考查了含30度角的直角三角形的性质,求出AC=CF=4cm是解答此题的关键.22、2+【解析】

试题分析:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.∵PE⊥AB,AB=2,半径为2,∴AE=AB=,PA=2,根据勾股定理得:PE=1,∵点A在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=∵⊙P的圆心是(2,a),∴a=PD+DC=2+.本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中.本题还需要注意的一个隐含条件就是:直线y=x或直线y=-x与x轴所形成的锐角为45°,这一个条件的应用也是很重要的.23、32【解析】

根据方差公式可知这组数据的样本容量和平均数,即可求出这组数据的总和.【详解】∵数据方差的计算公式是,∴样本容量为8,平均数为4,∴该组数据的总和为8×4=32,故答案为:32本题考查方差及平均数的意义,一般地,设n个数据,x1、x2、…xn的平均数为x,则方差s2=[(x1-x)2+(x2-x)2+…+(xn-x)2],平均数是指在一组数据中所有数据之和再除以数据的个数.二、解答题(本大题共3个小题,共30分)24、(1)证明见解析;(2)(1)中的结论还成立,证明见解析;(3)四边形的面积为.【解析】

(1)根据菱形的性质及已知,得到,再证,根据三角形全等的性质即可得到结论;(2)作,垂足分别为点,证明,根据三角形全等的性质即可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论