版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省上饶县二中2025届高二数学第一学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.从某个角度观察篮球(如图甲),可以得到一个对称的平面图形,如图乙所示,篮球的外轮廓为圆,将篮球表面的粘合线视为坐标轴和双曲线,若坐标轴和双曲线与圆的交点将圆的周长八等分,且,则该双曲线的离心率为()A. B.C.2 D.2.若圆与直线相切,则实数的值为()A. B.或3C. D.或3.过双曲线的左焦点作x轴的垂线交曲线C于点P,为右焦点,若,则双曲线的离心率为()A. B.C. D.4.设椭圆C:的左、右焦点分别为、,P是C上的点,⊥,∠=,则C的离心率为A. B.C. D.5.设满足则的最大值为A. B.2C.4 D.166.已知函数的值域为,则实数的取值范围是()A. B.C. D.7.已知圆M的圆心在直线上,且点,在M上,则M的方程为()A. B.C. D.8.三棱柱中,,,,若,则()A. B.C. D.9.均匀压缩是物理学一种常见现象.在平面直角坐标系中曲线均匀压缩,可用曲线上点的坐标来描述.设曲线上任意一点,若将曲线纵向均匀压缩至原来的一半,则点的对应点为.同理,若将曲线横向均匀压缩至原来的一半,则曲线上点的对应点为.若将单位圆先横向均匀压缩至原来的一半,再纵向均匀压缩至原来的,得到的曲线方程为()A. B.C. D.10.如图所示,用3种不同的颜色涂入图中的矩形A,B,C中,要求相邻的矩形不能使用同一种颜色,则不同的涂法有()ABCA.3种 B.6种C.12种 D.27种11.已知等差数列且,则数列的前13项之和为()A.26 B.39C.104 D.5212.运行如图所示程序后,输出的结果为()A.15 B.17C.19 D.21二、填空题:本题共4小题,每小题5分,共20分。13.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层灯数为_____________14.下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归方程是,则_______.月份1234用水量4.5432.515.若直线与直线相互平行,则实数___________.16.已知直线,抛物线上一动点到直线l的距离为d,则的最小值是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在正方体中,E,F分别是,的中点(1)求证:∥平面;(2)求平面与平面EDC所成的二面角的正弦值18.(12分)如图,已知双曲线,过向双曲线作两条切线,切点分别为,,且.(1)证明:直线的方程为.(2)设为双曲线的左焦点,证明:.19.(12分)已知椭圆与抛物线有一个相同的焦点,且该椭圆的离心率为,(Ⅰ)求该椭圆的标准方程:(Ⅱ)求过点的直线与该椭圆交于A,B两点,O为坐标原点,若,求的面积.20.(12分)如图,几何体中,平面,,,,E是中点,二面角的平面角为.(1)求证:平面;(2)求直线与平面所成角的正弦值.21.(12分)已知函数.(1)求函数在处的切线方程;(2)求函数在区间上的最大值与最小值.22.(10分)已知数列{an}的前n项和为Sn,.(1)求数列{an}通项公式;(2)求数列的前n项和,求使不等式成立的最大整数m的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设出双曲线方程,把双曲线上的点的坐标表示出来并代入到方程中,找到的关系即可求解.【详解】以O为原点,AD所在直线为x轴建系,不妨设,则该双曲线过点且,将点代入方程,故离心率为,故选:B【点睛】本题考查已知点在双曲线上求双曲线离心率的方法,属于基础题目2、D【解析】利用圆心到直线的距离等于半径可得答案.【详解】若圆与直线相切,则到直线的距离为,所以,解得,或.故选:D.3、D【解析】由题知是等腰直角三角形,,又根据通径的结论知,结合可列出关于的二次齐次式,即可求解离心率.【详解】由题知是等腰直角三角形,且,,又,,即,,,即,解得,,.故选:D.4、D【解析】详解】由题意可设|PF2|=m,结合条件可知|PF1|=2m,|F1F2|=m,故离心率e=选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.5、C【解析】可行域如图,则直线过点A(0,1)取最大值2,则的最大值为4,选C.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.6、D【解析】求出函数在时值的集合,函数在时值的集合,再由已知并借助集合包含关系即可作答.【详解】当时,在上单调递增,,,则在上值的集合是,当时,,,当时,,当时,,即在上单调递减,在上单调递增,,,则在上值的集合为,因函数的值域为,于是得,则,解得,所以实数的取值范围是.故选:D7、C【解析】由题设写出的中垂线,求其与的交点即得圆心坐标,再应用两点距离公式求半径,即可得圆的方程.【详解】因为点,在M上,所以圆心在的中垂线上由,解得,即圆心为,则半径,所以M的方程为故选:C8、A【解析】利用空间向量线性运算及基本定理结合图形即可得出答案.【详解】解:由,,,若,得.故选:A.9、C【解析】设单位圆上一点为,经过题设变换后坐标为,则,代入圆的方程即可得曲线方程.【详解】由题设,单位圆上一点坐标为,经过横向均匀压缩至原来的一半,纵向均匀压缩至原来的,得到对应坐标为,∴,则,故中,可得:.故选:C.10、C【解析】根据给定信息,按用色多少分成两类,再分类计算作答.【详解】计算不同的涂色方法数有两类办法:用3种颜色,每个矩形涂一种颜色,有种方法,用2色,矩形A,C涂同色,有种方法,由分类加法计数原理得(种),所以不同的涂法有12种.故选:C11、A【解析】根据等差数列的性质化简已知条件可得的值,再由等差数列前项和及等差数列的性质即可求解.【详解】由等差数列的性质可得:,,所以由可得:,解得:,所以数列的前13项之和为,故选:A12、D【解析】根据给出的循环程序进行求解,直到满足,输出.【详解】,,,,,,,,,,,,所以.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】分析:设塔的顶层共有a1盏灯,则数列{an}公比为2的等比数列,利用等比数列前n项和公式能求出结果详解:设塔的顶层共有a1盏灯,则数列{an}公比为2的等比数列,∴S7==381,解得a1=3.故答案为3.点睛:本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力.14、25【解析】根据表格数据求出,代入,即可求出.【详解】解:由题意知:,,将代入线性回归方程,即,解得:.故答案为:5.25.15、##【解析】由题意可得,从而可求出的值【详解】因为直线与直线相互平行,所以,解得,故答案为:16、##【解析】作直线l,抛物线准线且交y轴于A点,根据抛物线定义有,进而判断目标式最小时的位置关系,结合点线距离公式求最小值.【详解】如下图示:若直线l,抛物线准线且交y轴于A点,则,,由抛物线定义知:,则,所以,要使目标式最小,即最小,当共线时,又,此时.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】(1)连接,,连接,证明CE∥即可;(2)建立空间直角坐标系,求出平面与平面EDC的法向量,利用向量法求二面角的正弦值.【小问1详解】如图,连接,,连接,∵BC∥且BC=,∴四边形是平行四边形,∴∥且,∵E是中点,G是中点,∴∥CG且,∴四边形是平行四边形,∴∥CE,∵平面,CE平面,∴CE∥平面;【小问2详解】如图建立空间直角坐标系,设正方体的棱长为2,则,则,设平面的法向量为,则,取;设平面EDC的法向量为,则,取,则;设平面与平面EDC所成的二面角的平面角为α,则,∴18、(1)证明见解析(2)证明见解析【解析】(1)设出切线方程,联立后用韦达定理及根的判别式进行表达出A的横坐标与纵坐标,进而表达出直线的方程,化简即为结果;(2)再第一问的基础上,利用向量的夹角公式表达出夹角的余弦值,进而证明出结论.【小问1详解】显然直线的斜率存在,设直线的方程为,联立得,则,化简得.因为方程有两个相等实根,故切点A的横坐标,得,则,故,则,即.【小问2详解】同理可得,又与均过,所以.故,,,又因为,所以,则,,故,故.【点睛】圆锥曲线中证明角度相关的问题,往往需要转化为斜率或向量进行求解.19、(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据题意可以求出椭圆的焦点,再根据椭圆的离心率公式,求出的值,然后结合椭圆的关系求出,最后写出椭圆的标准方程;(Ⅱ)根据平面向量共线定理可以得出A,B两点横坐标和纵坐标之间的关系,再设出直线AB方程与椭圆方程联立,利用根与系数关系求出直线AB的斜率,最后根据三角形面积结合根与系数关系求出的面积.【详解】(Ⅰ)由题意,设椭圆的标准方程为,由题意可得,又,,所以椭圆的标准方程为(Ⅱ)设,,由得:,验证易知直线AB的斜率存在,设直线AB的方程为联立椭圆方程,得:,整理得:,得:,将代入得,所以的面积.【点睛】本题考查了求椭圆的标准方程,考查了利用一元二次方程根与系数关系求直线斜率和三角形面积问题,考查了数学运算能力.20、(1)证明见解答;(2)【解析】(1)平面,可得,是二面角的平面角,由余弦定理可得,,从而可证平面;(2)以为坐标原点,,,所在直线为坐标轴建立如图所示的空间直角坐标系,求平面的一个法向量与的方向向量,利用向量法可求直线与平面所成角的正弦值【小问1详解】证明:取中点,又是中点,,,平面,平面,,平面,是二面角的平面角,,又,,在中,由余弦定理有,可得,又是中点,,平面,,又,平面,平面.【小问2详解】解:以为坐标原点,,,所在直线为坐标轴建立如图所示的空间直角坐标系,则,0,,,1,,,0,,,1,,1,,,0,,,1,设平面的一个法向量为,,,则,令,则,,平面的一个法向量为,,,设直线与平面所成角为,则,直线与平面所成角的正弦值为21、(1)(2),【解析】(1)根据导数的几何意义即可求解;(2)根据导数的正负判断f(x)的单调性,根据其单调性即可求最大值和最小值.【小问1详解】,切点为(1,-2),∵,∴切线斜率,切线方程为;【小问2详解】令,解得,1200极大值极小值2∵,,∴当时,,.22、(1);(2).【解析】(1)根据给定的递推公式变形,再
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45178-2024化学纤维抗氧化活性测定DPPH和ABTS法
- GB/T 45160-2024木工机床安全卧式锯板机
- 湖南省岳阳市2024年中考第二次模拟考试数学试卷附答案
- 高一化学二课后习题(全)
- 2024届百色市重点中学高考化学三模试卷含解析
- 2024高中地理第2章区域生态环境建设第2节第2课时热带雨林的开发与保护学案新人教版必修3
- 2024高中物理第三章磁场章末质量评估三含解析粤教版选修3-1
- 2024高中语文第四单元创造形象诗文有别大铁椎传作业含解析新人教版选修中国古代诗歌散文欣赏
- 2024高考化学一轮复习专练48基本仪器的使用及药品的存放含解析新人教版
- 2024高考化学一轮复习课练31物质的制备含解析
- 2025年中国高纯生铁行业政策、市场规模及投资前景研究报告(智研咨询发布)
- 2022-2024年浙江中考英语试题汇编:完形填空(学生版)
- 2025年广东省广州市荔湾区各街道办事处招聘90人历年高频重点提升(共500题)附带答案详解
- 中试部培训资料
- 北师大版数学三年级下册竖式计算题100道
- 计算机网络技术全套教学课件
- 屋顶分布式光伏发电项目施工重点难点分析及应对措施
- 胃镜下超声穿刺护理配合
- 2024解析:第三章物态变化-基础练(原卷版)
- 2023年浙江杭州师范大学附属医院招聘聘用人员考试真题
- 小学三年级数学上册《三位数加减乘法》口算专项练习300道
评论
0/150
提交评论