版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页2024年山西农业大附属学校数学九上开学预测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知点,点都在直线上,则,的大小关系是()A. B. C. D.无法确定2、(4分)下列运算错误的是()A. B. C. D.3、(4分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠24、(4分)已知(x﹣1)|x|﹣1有意义且恒等于1,则x的值为()A.﹣1或2 B.1 C.±1 D.05、(4分)若点A(3,2)与B(-3,m)关于原点对称,则m的值是()A.3 B.-3 C.2 D.-26、(4分)小华同学某体育项目7次测试成绩如下(单位:分):9,7,1,8,1,9,1.这组数据的中位数和众数分别为()A.8,1 B.1,9 C.8,9 D.9,17、(4分)在下列各式中,一定是二次根式的是()A. B. C. D.8、(4分)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为()A.12 B.14 C.16 D.18二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知5+的整数部分为a,5-的小数部分为b,则a+b的值为__________10、(4分)在△ABC,∠BAC90,ABAC4,O是BC的中点,D是腰AB上一动点,把△DOB沿OD折叠得到△DOB',当∠ADB'45时,BD的长度为_____.11、(4分)如图在菱形ABCD中,∠A=60°,AD=,点P是对角线AC上的一个动点,过点P作EF⊥AC交AD于点E,交AB于点F,将△AEF沿EF折叠点A落在G处,当△CGB为等腰三角形时,则AP的长为__________.12、(4分)点A(﹣3,0)关于y轴的对称点的坐标是__.13、(4分)如图,在矩形ABCD中,DE⊥AC,∠CDE=2∠ADE,那么∠BDC的度数是________.三、解答题(本大题共5个小题,共48分)14、(12分)如图将矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,且CE与AD相交于点F,求证:EF=DF.15、(8分)如图,矩形ABCD中,对角线AC、BD相交于点O,点P是线段AD上一动点(不与与点D重合),PO的延长线交BC于Q点.(1)求证:四边形PBQD为平行四边形.(2)若AB=6cm,AD=8cm,P从点A出发.以1cm/秒的速度向点D匀速运动.设点P运动时间为t秒,问四边形PBQD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.16、(8分)将矩形纸片按图①所示的方式折叠,得到菱形(如图②),若,求的长.17、(10分)已知深港两地的高铁站深圳北、九龙西两站相距约40km.现高铁与地铁冋时从深圳北出发驶向九龙西,高铁的平均速度比地铁快70km/h,当高铁到达九龙西站时,地铁恰好到达距离深圳北站12km处的福田站,求高铁的平均速度.(不考虑换乘时间).18、(10分)如图,一次函数y=2x+4的图象与x,y轴分别相交于点A,B,以AB为边作正方形ABCD(点D落在第四象限).(1)求点A,B,D的坐标;(2)联结OC,设正方形的边CD与x相交于点E,点M在x轴上,如果△ADE与△COM全等,求点M的坐标.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)求代数式的值是____________.20、(4分)据统计,2008年上海市常住人口数量约为18884600人,用科学计数法表示上海市常住人口数是___________.(保留4个有效数字)21、(4分)如图是一辆慢车与一辆快车沿相同路线从地到地所行的路程与时间之间的函数图象,已知慢车比快车早出发小时,则、两地的距离为________
.22、(4分)已知点M(-1,),N(,-2)关于x轴对称,则=_____23、(4分)如图,已知矩形ABCD沿着直线BD折叠,使点C落在C/处,BC/交AD于E,AD=8,AB=4,DE的长=________________.二、解答题(本大题共3个小题,共30分)24、(8分)(1)化简求值:,其中.(2)解不等式组:,并把它的解集在数轴上表示出来.25、(10分)如图,E、F是▱ABCD对角线AC上的两点,且求证:≌;26、(12分)如图所示,正方形ABCD中,点E、F、G分别是边AD、AB、BC的中点,连接EP、FG.(1)如图1,直接写出EF与FG的关系____________;(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FH,连接EH.①求证:△FFE≌△PFG;②直接写出EF、EH、BP三者之间的关系;(3)如图3,若点P为CB延长线上的一动点,连接FP,按照(2)中的做法,在图(3)中补全图形,并直接写出EF、EH、BP三者之间的关系.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
根据一次函数的性质,当k<0时,y随x的增大而减小,可以解答本题.【详解】解:∵y=-3x+2,k=-3<0,∴y随x的增大而减小,∵点A(-1,y1),B(2,y2)都在直线y=-3x+2上,∴y1>y2,故选:A.本题考查一次函数y=kx+b(k≠0,且k,b为常数)的图象性质:当k>0时,y随x的增大而增大;当k<0时,y将随x的增大而减小.2、C【解析】
根据二次根的运算法则对选项进行判断即可【详解】A.,所以本选项正确B.,所以本选项正确C.,不是同类二次根式,不能合并,故本选项错误D.,所以本选项正确故选C.本题考查二次根,熟练掌握二次根式的性质和运算法则是解题关键3、D【解析】试题解析:由题意得,且解得且故选D.4、A【解析】
根据任何非3数的3次幂等于1,求x的值,注意1的任何正整数次幂也是1.【详解】根据题意,得x-1≠3,|x|-1=3.∵|x|-1=3,∴x=±1,∵x-1≠3,∴x≠1,又当x=3时,(x-1)|x|-1=1,综上可知,x的值是-1或3.故选A.此题考查了绝对值的定义,零指数幂的定义,比较简单.5、D【解析】
根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】∵点A(3,2)与B(-3,m)关于原点对称,∴m=-2,故选D.本题考查了关于原点对称的点的坐标,熟记关于原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.6、D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,1,1,1,最中间的数是9,则中位数是9;1出现了3次,出现的次数最多,则众数是1;故选D.考点:众数;中位数.7、C【解析】试题解析::A、是三次根式;故本选项错误;B、被开方数-10<0,不是二次根式;故本选项错误;C、被开方数a2+1≥0,符合二次根式的定义;故本选项正确;D、被开方数a<0时,不是二次根式;故本选项错误;故选C.点睛:式子(a≥0)叫做二次根式,特别注意a≥0,a是一个非负数.8、A【解析】
由矩形的性质得出OA=OB,再证明△AOB是等边三角形,得出AB=OA=OB=4,即可求出△ABO的周长.【详解】∵四边形ABCD是矩形,∴OA=AC=4,OB=BD,AC=BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=OB=4,∴△ABO的周长=OA+OB+AB=12;故选A.本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、12-【解析】
先估算的取值范围,再求出5+与5-的取值范围,从而求出a,b的值.【详解】解:∵3<<4,∴8<5+<9,1<5-<2,∴5+的整数部分为a=8,5-的小数部分为b=5--1=4-,∴a+b=8+4-=12-,故答案为12-.本题主要考查了无理数的估算,解题关键是确定无理数的范围.10、.【解析】
由勾股定理可得,由折叠的性质和平行线的性质可得,即可求的长.【详解】如图,,,,,是的中点,,把沿折叠得到,,,,,,,,.故答案为.本题考查了翻折变换,直角三角形的性质,熟练运用折叠的性质是本题的关键.11、1或.【解析】
分两种情形①CG=CB,②GC=GB,分别求解即可解决问题.【详解】在菱形ABCD中,∵∠A=60°,AD=,∴AC=3,①当CG=BC=时,AG=AC=CG=3-,∴AP=AG=.②当GC=GB时,易知GC=1,AG=2,∴AP=AG=1,故答案为1或.本题考查翻折变换、等腰三角形的性质、勾股定理、菱形的性质等知识,解题的关键是学会用分类讨论的思想思考问题12、(3,0)【解析】试题分析:因为点P(a,b)关于y轴的对称点的坐标是(-a,b),所以点A(﹣3,0)关于y轴的对称点的坐标是(3,0),故答案为(3,0)考点:关于y轴对称的点的坐标.13、30°【解析】分析:由矩形的性质得出∠ADC=90°,OA=OD,得出∠ODA=∠DAE,由已知条件求出∠ADE,得出∠DAE、∠ODA,即可得出∠BDC的度数.详解:∵四边形ABCD是矩形,∴∠ADC=90°,OA=OD,∴∠ODA=∠DAE,∵∠CDE=2∠ADE,∴∠ADE=90°÷3=30°,∵DE⊥AC,∴∠AED=90°,∴∠DAE=60°,∴∠ODA=60°,∴∠BDC=90°-60°=30°;故答案为:30°.点睛:本题考查了矩形的性质、等腰三角形的判定与性质;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.三、解答题(本大题共5个小题,共48分)14、见解析【解析】
先由四边形为矩形,得出AE=CD,∠E=∠D,再由对顶角相等,即可证明△AEF≌△CDF即可.【详解】∵四边形ABCD是矩形,∴∠D=∠E,AE=CD,又∵∠AFE=∠CFD,在△AEF和△CDF中,,∴△AEF≌△CDF(AAS),∴EF=DF.15、(1)详见解析;(2)点P运动时间为秒时,四边形PBQD是菱形.【解析】
(1)依据矩形的性质和平行线的性质,通过全等三角形的判定定理判定△POD≌△QOB,所以OP=OQ,则四边形PBQD的对角线互相平分,故四边形PBQD为平行四边形.
(2)点P从点A出发运动t秒时,AP=tcm,PD=(4-t)cm.当四边形PBQD是菱形时,PB=PD=(4-t)cm.在直角△ABP中,根据勾股定理得AP2+AB2=PB2,即t2+32=(4-t)2,由此可以求得t的值.【详解】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠PDO=∠QBO,在△POD和△QOB中,∴△POD≌△QOB(ASA),∴OP=OQ;又∵OB=OD∴四边形PBQD为平行四边形;(2)答:能成为菱形;证明:t秒后AP=t,PD=8﹣t,若四边形PBQD是菱形,∴PD=BP=8﹣t,∵四边形ABCD是矩形,∴∠A=90°,在Rt△ABP中,由勾股定理得:AB2+AP2=BP2,即62+t2=(8﹣t)2,解得:t=.即点P运动时间为秒时,四边形PBQD是菱形.本题考查了平行四边形的判定、矩形的性质以及菱形的性质.凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明,应直接运用平行四边形的性质和判定去解决问题.16、【解析】
根据菱形及矩形的性质可得到∠BAC的度数,从而根据直角三角函的性质求得BC的长.【详解】解:由折叠可得,△EOC≌△EBC,∴CB=CO,∵四边形ABED是菱形,∴AO=CO.∵四边形ABCD是矩形,∴∠B=90°,设BC=x,则AC=2x,∵在Rt△ABC中,AC2=BC2+AB2,∴(2x)2=x2+32,解得x=,即BC=.根据折叠以及菱形的性质发现特殊角,根据30°的直角三角形中各边之间的关系求得BC的长.17、高铁的平均速度为100km/h【解析】
设设高铁的平均速度为xkm/h,根据时间=路程÷速度,即可得出关于x的分式方程,解之经检验即可得出结论.【详解】设高铁的平均速度为xkm/h,依题意得解得x=100,经检验,x=100是原方程的解,答:高铁的平均速度为100km/h.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.18、(1)A(-2,0),B(0,4),D(2,-2);(2)M(5,0).【解析】
(1)由于一次函数y=2x+4的图象与x、y轴分别交于点A、B,所以利用函数解析式即可求出A、B两点的坐标,然后作DF⊥x轴于点F,由四边形ABCD是正方形可以得到∠BAD=∠AOB=∠AFD=90º,AB=AD,接着证明△BAO≌△ADF,最后利用全等三角形的性质可以得到DF=AO=2,AF=BO=4,从而求出点D的坐标;(2)过点C作CG⊥y轴于G,连接OC,作CM⊥OC交x轴于M,用求点D的方法求得点C的坐标为(4,2),得出OC=2,由A、B的坐标得到AB=2,从而OC=AB=AD,根据△ADE与△COM全等,利用全等三角形的性质可知OM=AE,即OA=EM=2,利用C、D的坐标求出直线CD的解析式,得出点E的坐标,根据EM=2,即可求出点M的坐标.【详解】解:(1)∵一次函数y=2x+4的图象与x,y轴分别相交于点A,B,∴A(-2,0),B(0,4),∴OA=2,OB=4,如图1,过点D作DF⊥x轴于F,∴∠DAF+∠ADF=90°,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAF+∠BAO=90°,∴∠ADF=∠BAO,在△ADF和△BAO中,,∴△ADF≌△BAO(AAS),∴DF=OA=2,AF=OB=4,∴OF=AF-OA=2,∵点D落在第四象限,∴D(2,-2);(2)如图2,过点C作CG⊥y轴于G,连接OC,作CM⊥OC交x轴于M,同(1)求点D的方法得,C(4,2),∴OC==2,∵A(-2,0),B(0,4),∴AB=2,∵四边形ABCD是正方形,∴AD=AB=2=OC,∵△ADE与△COM全等,且点M在x轴上,∴△ADE≌△OCM,∴OM=AE,∵OM=OE+EM,AE=OE+OA,∴EM=OA=2,∵C(4,2),D(2,-2),∴直线CD的解析式为y=2x-6,令y=0,∴2x-6=0,∴x=3,∴E(3,0),∴OM=5,∴M(5,0).故答案为(1)A(-2,0),B(0,4),D(2,-2);(2)M(5,0).本题考查了一次函数图象上点的坐标特征,正方形的性质,全等三角形的判定与性质.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】
先算乘方,再通分,最后化简即可.【详解】解:原式=-+c+1==
=1,
故答案为:1.本题考查了二次根式的混合运算,熟练掌握运算顺序和运算法则是解题关键.20、1.888×【解析】
先用用科学记数法表示为:的形式,然后将保留4位有效数字可得.【详解】18884600=1.88846×≈1.888×故答案为:1.888×本题考查科学记数法,注意科学记数法还可以表示较小的数,表示形式为:.21、1【解析】分析:根据数量关系“路程=速度×时间”结合函数图象,即可得出v快=v慢,设两车相遇的时间为t,根据数量关系“路程=速度×时间”即可得出t•v慢=(t-2)•v快=276,解之即可得出t与v慢的值,将慢车的速度代入s=18v慢中即可求出A、B两地的距离.详解:根据函数图象可知:s=(14-2)v快=18v慢,
∴v快=v慢.
设两车相遇的时间为t,
根据函数图象可知:t•v慢=(t-2)•v快=276,
解得:t=6,v慢=46,
∴s=18v慢=18×46=1.
故答案为1.点睛:考查了函数的图象以及解一元一次方程,根据数量关系结合函数图象找出快、慢两车速度间的关系是解题的关键.22、1【解析】
若P的坐标为(x,y),则点P关于x轴的对称点的坐标P′是(x,-y)由此可求出a和b的值,问题得解.【详解】根据题意,得b=-1,a=2,则ba=(-1)2=1,
故答案是:1.考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.23、5【解析】
首先根据矩形的性质可得出AD∥BC,即∠1=∠3,然后根据折叠知∠1=∠2,C′D=CD、BC′=BC,可得到∠2=∠3,进而得出BE=DE,设DE=x,则EC′=8-x,利用勾股定理求出x的值,即可求出DE的长.【详解】∵四边形ABCD是矩形,
∴AD∥BC,即∠1=∠3,
由折叠知,∠1=∠2,C′D=CD=4、BC′=BC=8,
∴∠2=∠3,即DE=BE,
设DE=x,则EC′=8−x,
在Rt△DEC′中,DC′2+EC′2=DE2
∴42+(8−x)2=x2解得:x=5,
∴DE的长为5.本题考查折叠问题,解题的关键是掌握折叠的性质和矩形的性质.二、解答题(本大题共3个小题,共30分)24、(1),原式;(2).把它的解集在数轴上表示出来见解析.【解析】
(1)首先计算括号里面同分母的分式减法,然后除以括号外面的分式时,要乘以它的倒数,然后进行约分化简,代入求值;(2)分别解两个不等式,得到不等式组的解集,然后在数轴上表示解集即可.【详解】解:(1),把代入得:原式;(2),由①得,由②得,∴原不等式组的解集是.在数轴上表示解集如下:解题关键:(1)化简过程中运用到分式的通分,找准最简公分母是关键;还运用到分式的约分,利用乘法公式把分式的分子分母因式分解之后进行约分;(2)熟练掌握不等式的解法,在数轴上表示解集时,一定注意是空心点还是实心点.25、证明见解析.【解析】
根据平行四边形性质得出AD=BC,AD//BC,根据平行线性质求出∠DAF=∠BCE,求出∠AFD=∠CEB,再根据AAS证△ADF≌△CBE即可.【详解】证明:,,,四边形ABCD是平行四边形,,在和中,,≌.本题考查了平行四边形性质、平行线的性质、全等三角形的性质和判定等知识点,关键是推出证△ADF和△CBE全等的三个条件,题目比较好,难度适中.26、(1)EF⊥FG,EF=FG;(2)详见解析;(3)补全图形如图3所示,EF+BP=EH.【解析】
(1)根据线段中点的定义求出AE=AF=BF=BG,得出∠AFE=∠AEF=∠BFG=∠BGF=45°,求出∠EFG的度数,由“SAS”证得△AEF和△BFG全等,得出EF=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《合伙人合同协议书补充协议》
- 双方调解协议模板大全
- 公司股份合作协议书范本10篇
- 全国赛课一等奖初中统编版七年级道德与法治上册《树立正确的人生目标》课件
- (2024)商业街建设项目可行性研究报告建议书(一)
- 2023年胺类项目融资计划书
- 《基本透视原理》课件
- 山东省枣庄市薛城区2022-2023学年八年级上学期期末考试数学试卷(含答案)
- 养老院老人生活设施维护制度
- 养老院老人财务管理制度
- 水泥混凝土路面施工方案85171
- 建筑电气施工图(1)课件
- 质量管理体系运行奖惩考核办法课案
- 泰康人寿养老社区介绍课件
- T∕CSTM 00584-2022 建筑用晶体硅光伏屋面瓦
- 2020春国家开放大学《应用写作》形考任务1-6参考答案
- 国家开放大学实验学院生活中的法律第二单元测验答案
- CAMDS操作方法及使用技巧
- Zarit照顾者负担量表
- 2021年全国质量奖现场汇报材料-财务资源、财务管理过程及结果课件
- 5F营销工业化模式(194张)课件
评论
0/150
提交评论