上海市上海外国语大学附中2025届高一上数学期末检测模拟试题含解析_第1页
上海市上海外国语大学附中2025届高一上数学期末检测模拟试题含解析_第2页
上海市上海外国语大学附中2025届高一上数学期末检测模拟试题含解析_第3页
上海市上海外国语大学附中2025届高一上数学期末检测模拟试题含解析_第4页
上海市上海外国语大学附中2025届高一上数学期末检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市上海外国语大学附中2025届高一上数学期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,一个空间几何体的正视图和侧视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的侧面积为()A. B.C. D.2.若-4<x<1,则()A.有最小值1 B.有最大值1C.有最小值-1 D.有最大值-13.已知函数满足∶当时,,当时,,若,且,设,则()A.没有最小值 B.的最小值为C.的最小值为 D.的最小值为4.为空间中不重合的两条直线,为空间中不重合的两个平面,则①若;②;③;④上述说法正确的是A.①③ B.②③C.①② D.③④5.计算sin(-1380°)的值为()A. B.C. D.6.三个数20.3,0.32,log0.32的大小顺序是A.0.32<log0.32<20.3 B.0.32<20.3<log0.32C.log0.32<20.3<0.32 D.log0.32<0.32<20.37.已知原点到直线的距离为1,圆与直线相切,则满足条件的直线有A.1条 B.2条C.3条 D.4条8.设是定义在R上的奇函数,当时,(b为常数),则的值为()A.﹣6 B.﹣4C.4 D.69.已知一个样本容量为7的样本的平均数为5,方差为2,现样本加入新数据4,5,6,此时样本容量为10,若此时平均数为,方差为,则()A., B.,C., D.,10.要得到函数的图象,只需要将函数的图象A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位二、填空题:本大题共6小题,每小题5分,共30分。11.函数且的图象恒过定点__________.12.设函数,若关于的不等式的解集为,则__________13.函数零点的个数为______.14.已知函数是定义在上的偶函数,且在区间上单调递减,若实数满足,则的取值范围是______15.已知,,则________.16.已知函数,x0R,使得,则a=_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,是半径为的半圆,为直径,点为的中点,点和点为线段的三等分点,平面外一点满足平面,=.(1)证明:;(2)求点到平面的距离.18.已知函数是偶函数.(1)求k的值;(2)设,若函数与的图象有且只有一个公共点,求实数a的取值范围.19.定义在上的奇函数,已知当时,(1)求在上的解析式;(2)若时,不等式恒成立,求实数的取值范围20.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是边长2的正方形,E,F分别为线段DD1,BD的中点(1)求证:EF∥平面ABD1;(2)AA1=,求异面直线EF与BC所成角的正弦值21.闽东传承着中国博大精深的茶文化,讲究茶叶茶水的口感,茶水的口感与茶叶类型和水的温度有关.如果刚泡好的茶水温度是,空气的温度是,那么分钟后茶水的温度(单位:)可由公式求得,其中是一个物体与空气的接触状况而定的正常数.现有某种刚泡好的红茶水温度是,放在的空气中自然冷却,10分钟以后茶水的温度是(1)求k的值;(2)经验表明,温度为的该红茶水放在的空气中自然冷却至时饮用,可以产生最佳口感,那么,大约需要多长时间才能达到最佳饮用口感?(结果精确到,附:参考值)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】几何体是一个圆柱,圆柱的底面是一个直径为2的圆,圆柱的高是2,侧面展开图是一个矩形,进而求解.【详解】由三视图可知该几何体是底面半径为1高为2的圆柱,∴该几何体的侧面积为,故选:A【点睛】本题考查三视图和圆柱的侧面积,关键在于由三视图还原几何体.2、D【解析】先将转化为,根据-4<x<1,利用基本不等式求解.【详解】又∵-4<x<1,∴x-1<0∴-(x-1)>0∴.当且仅当x-1=,即x=0时等号成立故选:D【点睛】本题主要考查基本不等式的应用,还考查了转化求解问题的能力,属于基础题.3、B【解析】根据已知条件,首先利用表示出,然后根据已知条件求出的取值范围,最后利用一元二次函数并结合的取值范围即可求解.【详解】∵且,则,且,∴,即由,∴,又∵,∴当时,,当时,,故有最小值.故选:B.4、A【解析】由线面垂直的性质定理知①正确;②中直线可能在平面内,故②错误;,则内一定有直线//,,则有,所以,③正确;④中可能平行,相交,异面,故④错误,故选A5、D【解析】根据诱导公式以及特殊角三角函数值求结果.【详解】sin(-1380°)=sin(-1380°+1440°)=sin(60°)=故选:D【点睛】本题考查诱导公式以及特殊角三角函数值,考查基本求解能力,属基础题.6、D【解析】由已知得:,,,所以.故选D.考点:指数函数和对数函数的图像和性质.7、C【解析】由已知,直线满足到原点的距离为,到点的距离为,满足条件的直线即为圆和圆的公切线,因为这两个圆有两条外公切线和一条内公切线.故选C.考点:相离两圆的公切线8、B【解析】根据函数是奇函数,可得,求得,结合函数的解析式即可得出答案.【详解】解:因为是定义在R上的奇函数,当时,,,解得所以.故选:B.9、B【解析】设这10个数据分别为:,进而根据题意求出和,进而再根据平均数和方差的定义求得答案.【详解】设这10个数据分别为:,根据题意,,所以,.故选:B.10、B【解析】因为函数,要得到函数的图象,只需要将函数的图象向右平移个单位本题选择B选项.点睛:三角函数图象进行平移变换时注意提取x的系数,进行周期变换时,需要将x的系数变为原来的ω倍,要特别注意相位变换、周期变换的顺序,顺序不同,其变换量也不同二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】令真数为,求出的值,再代入函数解析式,即可得出函数的图象所过定点的坐标.【详解】令,得,且.函数的图象过定点.故答案为:.12、【解析】根据不等式的解集可得、、为对应方程的根,分析两个不等式对应方程的根,即可得解.【详解】由于满足,即,可得,所以,,所以,方程的两根分别为、,而可化为,即,所以,方程的两根分别为、,,且不等式解集为,所以,,解得,则,因此,.故答案为:.【点睛】关键点点睛:本题主要考查一元二次不等式与方程之间的关系,即不等式解集的端点即为对应方程的根,本题在理解、、分别为方程、的根,而两方程含有公共根,进而可得出关于实数的等式,即可求解.13、2【解析】将函数的零点的个数转化为与的图象的交点个数,在同一直角坐标系中画出图象即可得答案.【详解】解:令,这,则函数的零点的个数即为与的图象的交点个数,如图:由图象可知,与的图象的交点个数为2个,即函数的零点的个数为2.故答案为:2.【点睛】本题考查函数零点个数问题,可转化为函数图象交点个数,考查学生的作图能力和转化能力,是基础题.14、【解析】由函数的奇偶性与单调性分析可得,结合对数的运算性质变形可得,从而可得结果【详解】因为函数是定义在上的偶函数,且在区间上单调递减,所以,又由,则原不等式变形可得,解可得:,即的取值范围为,故答案为【点睛】本题主要考查函数的单调性与奇偶性的综合应用,考查了指数函数的单调性以及对数的运算,意在考查综合应用所学知识解答问题的能力,属于基础题15、【解析】根据已知条件求得的值,由此求得的值.【详解】依题意,两边平方得,而,所以,所以.由解得,所以.故答案为:【点睛】知道其中一个,可通过同角三角函数的基本关系式求得另外两个,在求解过程中要注意角的范围.16、【解析】由基本不等式及二次函数的性质可得,结合等号成立的条件可得,即可得解.【详解】由题意,,因为,当且仅当时,等号成立;,当且仅当时,等号成立;所以,又x0R,使得,所以,所以.故答案为:.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】本题主要考查直线与平面、点到面的距离,考查空间想象能力、推理论证能力(1)证明:∵点E为的中点,且为直径∴,且∴∵FC∩AC=C∴BE⊥平面FBD∵FD∈平面FBD∴EB⊥FD(2)解:∵,且∴又∵∴∴∵∴∵∴∴∴点到平面的距离点评:立体几何问题是高考中的热点问题之一,从近几年高考来看,立体几何的考查的分值基本是20分左右,其中小题一两题,解答题18、(1);(2).【解析】(1)根据偶函数得到,化简得到,解得答案.(2)化简得方程,设得到有且仅有一个正根,考虑和两种情况,计算得到答案.【详解】(1)由函数是偶函数可知:,∴,,即对一切恒成立,∴.(2)函数与的图象有且只有一个公共点,即方程有且只有一个实根.化简得:方程有且只有一个实根.令,则方程有且只有一个正根,当时,,不合题意;当且,解得或.若,,不合题意;若,满足;当且时,即或且,故;综上,实数a的取值范围是.【点睛】本题考查了根据函数的奇偶性求参数,函数公共交点问题,意在考查学生的计算能力和综合应用能力,换元是解题关键.19、(1);(2)【解析】(1)由函数是奇函数,求得,再结合函数的奇偶性,即可求解函数在上的解析式;(2)把,不等式恒成立,转化为,构造新函数,结合基本初等函数的性质,求得函数的最值,即可求解【详解】解:(1)由题意,函数是定义在上的奇函数,所以,解得,又由当时,,当时,则,可得,又是奇函数,所以,所以当时,(2)因为,恒成立,即在恒成立,可得在时恒成立,因为,所以,设函数,根据基本初等函数的性质,可得函数在上单调递减,因为时,所以函数的最大值为,所以,即实数的取值范围是【点睛】本题主要考查了利用函数的奇偶性求解函数的解析式,以及函数的恒成立问题的求解,其中解答中熟记函数的奇偶性,以及利用分离参数,结合函数的最值求解是解答的关键,着重考查了转化思想,以及推理与运算能力,属于中档试题20、(1)证明过程详见解析(2)【解析】(1)先证明EF∥D1B,即证EF∥平面ABD1.(2)先证明∠D1BC是异面直线EF与BC所成的角(或所成角的补角),再解三角形求其正弦值.【详解】(1)证明:连结BD1,在△DD1B中,E、F分别是D1D、DB的中点,∴EF是△DD1B的中位线,∴EF∥D1B,∵D1B⊂平面ABC1D1,EF平面ABD1,∴EF∥平面ABD1(2)∵AA1=,AB=2,EF∥BD1,∴∠D1BC是异面直线EF与BC所成的角(或所成角的补角),在直四棱柱ABCD-A1B1C1D1中,BC⊥平面CDD1C1,CD1⊄平面CD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论