版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省丰润车轴山中学2025届高二数学第一学期期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,四棱锥的底面是矩形,设,,,是棱上一点,且,则()A. B.C. D.2.设函数若函数有两个零点,则实数m的取值范围是()A. B.C. D.3.双曲线的光学性质为:如图①,从双曲线右焦点发出的光线经双曲线镜面反射,反射光线的反向延长线经过左焦点.我国首先研制成功的“双曲线新闻灯”,就是利用了双曲线的这个光学性质.某“双曲线新闻灯”的轴截面是双曲线的一部分,如图②,其方程为,为其左、右焦点,若从右焦点发出的光线经双曲线上的点和点反射后,满足,,则该双曲线的离心率为()A. B.C. D.4.设,则是的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.若数列满足,,则数列的通项公式为()A. B.C. D.6.今天是星期四,经过天后是星期()A.三 B.四C.五 D.六7.设分别为圆和椭圆上的点,则两点间的最大距离是A. B.C. D.8.中,内角A,B,C的对边分别为a,b,c,若,则等于()A. B.C. D.9.在数列中,,则的值为()A. B.C. D.以上都不对10.已知向量,.若,则()A. B.C. D.11.已知向量,且与互相垂直,则k=()A. B.C. D.12.直线关于直线对称的直线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,空间直角坐标系中,过点且一个法向量为的平面的方程为.用以上知识解决下面问题:已知平面的方程为,直线是两个平面与的交线,则直线与平面所成角的正弦值为___________.14.函数在处的切线方程是_________15.若函数在区间上单调递减,则实数的取值范围是____________.16.对于实数表示不超过的最大整数,如.已知数列的通项公式,前项和为,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某公司举办捐步公益活动,参与者通过捐赠每天运动步数获得公司提供的牛奶,再将牛奶捐赠给留守儿童.此活动不但为公益事业作出了较大的贡献,还为公司获得了相应的广告效益,据测算,首日参与活动人数为5000人,以后每天人数比前一天都增加15%,30天后捐步人数稳定在第30天的水平,假设此项活动的启动资金为20万元,每位捐步者每天可以使公司收益0.05元(以下人数精确到1人,收益精确到1元)(1)求活动开始后第5天的捐步人数,及前5天公司的捐步总收益;(2)活动开始第几天以后公司的捐步总收益可以收回启动资金并有盈余?18.(12分)已知函数的图像在(为自然对数的底数)处取得极值.(1)求实数的值;(2)若不等式在恒成立,求的取值范围.19.(12分)某校高二年级全体学生参加了一次数学测试,学校利用简单随机抽样的方法从甲班、乙班各抽取五名同学的数学测试成绩(单位:分)得到如下茎叶图,若甲、乙两班数据的中位数相等且平均数也相等.(1)求出茎叶图中m和n的值:(2)若从86分以上(不含86分)的同学中随机抽出两名,求此两人都来自甲班的概率.20.(12分)2017年5月27日当今世界围棋排名第一的柯洁在与的人机大战中中盘弃子认输,至此柯洁与的三场比赛全部结束,柯洁三战全负,这次人机大战再次引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查,根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.(1)请根据已知条件完成下面列联表,并据此资料你是否有95%的把握认为“围棋迷”与性别有关?非围棋迷围棋迷合计男女1055合计(2)为了进一步了解“围棋迷”的围棋水平,从“围棋迷”中按性别分层抽样抽取5名学生组队参加校际交流赛,首轮该校需派两名学生出赛,若从5名学生中随机抽取2人出赛,求2人恰好一男一女的概率.参考数据:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821.(12分)如图,在三棱锥中,平面平面,,都是等腰直角三角形,,,,分别为,的中点.(1)求证:平面;(2)求证:平面.22.(10分)已知函数(1)当时,求的单调性;(2)若存在两个极值点,试证明:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据空间向量基本定理求解【详解】由已知故选:B2、D【解析】有两个零点等价于与的图象有两个交点,利用导数分析函数的单调性与最值,画出函数图象,数形结合可得结果.【详解】解:设,则,所以在上递减,在上递增,,且时,,有两个零点等价于与的图象有两个交点,画出的图象,如下图所示,由图可得,时,与的图象有两个交点,此时,函数有两个零点,实数m的取值范围是,故选:D.【点睛】方法点睛:本题主要考查分段函数的性质、利用导数研究函数的单调性、函数的零点,以及数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质3、C【解析】连接,已知条件为,,设,由双曲线定义表示出,用已知正切值求出,再由双曲线定义得,这样可由勾股定理求出(用表示),然后在中,应用勾股定理得出的关系,求得离心率【详解】易知共线,共线,如图,设,,则,由得,,又,所以,,所以,所以,由得,因为,故解得,则,在中,,即,所以故选:C4、B【解析】,,所以是必要不充分条件,故选B.考点:1.指、对数函数的性质;2.充分条件与必要条件.5、B【解析】根据等差数列的定义和通项公式直接得出结果.【详解】因为,所以数列是等差数列,公差为1,所以.故选:B6、C【解析】求出二项式定理的通项公式,得到除以7余数是1,然后利用周期性进行计算即可【详解】解:一个星期的周期是7,则,即除以7余数是1,即今天是星期四,经过天后是星期五,故选:7、D【解析】转化为圆心到椭圆上点的距离的最大值加(半径).【详解】设,圆心为,则,当时,取到最大值,∴最大值为故选:D.【点睛】本题考查圆上点与椭圆上点的距离的最值问题,解题关键是圆上的点转化为圆心,利用圆心到动点距离的最值加(或减)半径得出结论8、A【解析】由题得,进而根据余弦定理求解即可.【详解】解:依题意,即,所以,所以,由于,所以故选:A9、C【解析】由数列的递推公式可先求数列的前几项,从而发现数列的周期性的特点,进而可求.【详解】解:,数列是以3为周期的数列故选:【点睛】本题主要考查了利用数列的递推公式求解数列的项,解题的关键是由递推关系发现数列的周期性的特点,属于基础题.10、A【解析】根据给定条件利用空间向量平行的坐标表示直接计算作答.【详解】向量,,因,则,解得,所以,B,D都不正确;,C不正确,A正确.故选:A11、C【解析】利用垂直的坐标表示列方程求解即可.【详解】由与互相垂直得,解得故选:C.12、C【解析】先联立方程得,再求得直线的点关于直线对称点的坐标为,进而根据题意得所求直线过点,,进而得直线方程.【详解】解:联立方程得,即直线与直线的交点为设直线的点关于直线对称点的坐标为,所以,解得所以直线关于直线对称的直线过点,所以所求直线方程的斜率为,所以所求直线的方程为,即故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意分别求出这三个平面的法向量,设直线的方向向量为,由直线与平面与的法向量垂直,得出,由向量的夹角公式可得答案.【详解】由,解得,即直线与平面的交点坐标为平面的方程为,可得所以平面的法向量为平面的法向量为,的法向量为设直线的方向向量为,则,即取,设直线与平面所成角则故答案为:14、【解析】求得,利用导数的几何意义,结合直线的点斜式方程,即可求得结果.【详解】因为,则,,,故在处的切线方程是,整理得:.故答案为:.15、【解析】求解定义域,由导函数小于0得到递减区间,进而得到不等式组,求出实数的取值范围.【详解】显然,且,由,以及考虑定义域x>0,解得:.在区间,上单调递减,∴,解得:.故答案为:16、54【解析】由,利用裂项相消法求得,再由的定义求解.【详解】由已知可得:,,当时,,;当时,,;当时,,;当时,,;当时,;;所以.故答案为:54.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)8745,1686元(2)37天【解析】(1)根据等比数列的性质求出结果;(2)对活动天数进行讨论,列出不等式求出的范围即可.【小问1详解】设第天的捐步人数为,则且,∴第5天的捐步人数为由题意可知前5天的捐步人数成等比数列,其中首项为5000,公比为1.15,∴前5天的捐步总收益为元.【小问2详解】设活动第天后公司捐步总收益可以回收并有盈余,若,则,解得(舍)若,则,解得∴活动开始后第37天公司的捐步总收益可以收回启动资金并有盈余.18、(1)(2)【解析】(1)由求得的值.(2)由分离常数,通过构造函数法,结合导数求得的取值范围.【小问1详解】因为,所以,因为函数的图像在点处取得极值,所以,,经检验,符合题意,所以;【小问2详解】由(1)知,,所以在恒成立,即对任意恒成立.令,则.设,易得是增函数,所以,所以,所以函数在上为增函数,则,所以.19、(1),(2)【解析】(1)根据茎叶图得甲班中位数为,由此能求出,根据由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,从86分以上(不含86分)的同学中随机抽出两名,用列举法写出基本事件总数,再利用古典概型的概率计算公式即可求解.【小问1详解】根据茎叶图可知1班中位数为86,则,又∵,且故【小问2详解】由(1)可知,甲班86分以上有2人,乙班86以上有2人设甲班86分以上2人为,,乙班86分以上2人为,,从中任取两名同学共有,,,,,共有6组基本事件,且每组出现都是等可能的记:“从86分以上(不含86分)的同学中随机抽出两名,两人都来自甲班”为事件M,事件M包括:共1个基本事件,由古典概型的计算概率的公式知∴所以两人都来自甲班的概率为20、(1)没有95%把握认为“围棋迷”与性别有关.(2).【解析】(1)由频率分布直方图求得频率与频数,填写列联表,计算观测值,对照临界值得出结论;(2)根据分层抽样原理,用列举法求出基本事件数,计算所求的概率值【详解】(1)由频率分布直方图可知,所以在抽取的100人中,“围棋迷”有25人,从而列联表如下非围棋迷围棋迷合计男301545女451055合计7525100因为,所以没有95%的把握认为“围棋迷”与性别有关.(2)由(1)中列联表可知25名“围棋迷”中有男生15名,女生10名,所以从“围棋迷”中按性别分层抽样抽取的5名学生中,有男生3名,记为,有女生2名,记为.则从5名学生中随机抽取2人出赛,基本事件有:,,,,,,,,,,共10种;其中2人恰好一男一女的有:,,,,,,共6种;故2人恰好一男一女的概率为.【点睛】本题考查了频率分布直方图、独立性检验和列举法求概率的应用问题,是基础题21、(1)证明见解析(2)证明见解析【解析】(1)由三角形的中位线定理可证得MN∥AB,再由线面垂直的判定定理可证得结论,(2)由已知可得AB⊥BC,VC⊥AC,再由已知结合面面垂直的性质定理可得VC⊥平面ABC,从而有AB⊥VC,然后由线面垂直的判定定理可证得结论【小问1详解】证明:∵M,N分别为VA,VB的中点,∴MN∥AB,∵AB⊄平面CMN,MN⊂平面CMN,∴AB∥平面CMN【小问2详解】证明:∵△ABC和△VAC均是等腰直角三角形,AB=BC,AC=CV,∴AB⊥BC,VC⊥AC,∵平面VAC⊥平面ABC,平面VAC∩平面ABC=AC,∴VC⊥平面ABC,∵AB⊂平面ABC,∴AB⊥VC,又VC∩BC=C,∴AB⊥平面VBC22、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 对外经贸大学国际工商管理学院HR培训课件
- 《建筑装修施工图》课件
- 防冰冻雨雪路滑安全教育
- 人生感悟和人生规划
- 市政工程招投标资格预审要点
- 森林防火期树木采伐规定
- 体育检测服务招标管理办法
- 养殖场供电系统工程协议
- 项目测试与质量控制
- 旅游行业法律顾问作用
- 同声传译知到章节答案智慧树2023年大连外国语大学
- 餐厅水单万能模板-可打印
- 犯罪心理学之青少年犯罪分析专家讲座
- 北京市朝阳区2022~2023学年度第一学期期末检测八年级数学试卷参考答案及评分标准
- 金融法案例优质获奖课件
- F450装机教程优秀课件
- (完整word版)高分子材料工程专业英语第二版课文翻译基本全了
- 识别自动化思维重塑快乐自我
- 品香的方法课件
- 防火涂料施工记录
- 电梯安全日常检查记录表
评论
0/150
提交评论