黑龙江省鸡西虎林市东方红林业局中学2025届高一数学第一学期期末监测模拟试题含解析_第1页
黑龙江省鸡西虎林市东方红林业局中学2025届高一数学第一学期期末监测模拟试题含解析_第2页
黑龙江省鸡西虎林市东方红林业局中学2025届高一数学第一学期期末监测模拟试题含解析_第3页
黑龙江省鸡西虎林市东方红林业局中学2025届高一数学第一学期期末监测模拟试题含解析_第4页
黑龙江省鸡西虎林市东方红林业局中学2025届高一数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省鸡西虎林市东方红林业局中学2025届高一数学第一学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知棱长为3的正方体ABCD﹣A1B1C1D1内部有一圆柱,此圆柱恰好以直线AC1为轴,则该圆柱侧面积的最大值为()A.92πC.23π2.已知扇形的面积为,扇形圆心角的弧度是,则扇形的周长为()A. B.C. D.3.定义运算,则函数的部分图象大致是()A. B.C. D.4.在中,,则的值为A. B.C. D.25.已知过点和的直线与直线平行,则的值为()A. B.0C.2 D.106.已知、是方程两个根,且、,则的值是()A. B.C.或 D.或7.已知向量且,则x值为().A.6 B.-6C.7 D.-78.已知向量,满足,,且与夹角为,则()A. B.C. D.9.为了得到函数的图象,可以将函数的图象A.向右平移个单位 B.向左平移个单位C.向右平移个单位 D.向左平移个单位10.已知函数f(x)=若f(f(0))=4a,则实数a等于A. B.C.2 D.9二、填空题:本大题共6小题,每小题5分,共30分。11.在直三棱柱中,若,则异面直线与所成的角等于_________.12.关于函数f(x)=有如下四个命题:①f(x)的图象关于y轴对称②f(x)的图象关于原点对称③f(x)的图象关于直线x=对称④f(x)的最小值为2其中所有真命题的序号是__________13.某品牌笔记本电脑的成本不断降低,若每隔4年价格就降低,则现在价格为8100元的笔记本电脑,12年后的价格将降为__________元14.已知,均为正数,且,则的最大值为____,的最小值为____.15.已知函数,则无论取何值,图象恒过的定点坐标______;若在上单调递减,则实数的取值范围是______16.函数的单调递增区间为_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)是偶函数,且x≤0时,f(x)=-(其中e为自然对数的底数)(Ⅰ)比较f(2)与f(-3)大小;(Ⅱ)设g(x)=2(1-3a)ex+2a+(其中x>0,a∈R),若函数f(x)的图象与函数g(x)的图象有且仅有一个公共点,求实数a的取值范围.18.已知函数,,g(x)与f(x)互为反函数.(1)若函数在区间内有最小值,求实数m的取值范围;(2)若函数y=h(g(x))在区间(1,2)内有唯一零点,求实数m的取值范围.19.已知全集,集合,.(1)当时,求;(2)命题p:,命题q:,若q是p的必要条件,求实数a的取值范围.20.(1)计算(2)已知角的终边过点,求角的三个三角函数值21.已知函数为的零点,为图象的对称轴(1)若在内有且仅有6个零点,求;(2)若在上单调,求的最大值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由题知,只需考虑圆柱的底面与正方体的表面相切的情况,即可得出结论【详解】由题知,只需考虑圆柱的底面与正方体的表面相切的情况,由图形的对称性可知,圆柱的上底面必与过A点的三个面相切,且切点分别在线段AB1,AC,AD1上,设线段AB1上的切点为E,AC1∩面A1BD=O2,圆柱上底面的圆心为O1,半径即为O1E=r,则AO2=13AC1=1332+32+3故选A【点睛】本题考查求圆柱侧面积的最大值,考查正方体与圆柱的内切问题,考查学生空间想象与分析解决问题的能力,属于中档题2、A【解析】根据扇形的面积公式和弧长的计算公式,求得弧长和半径,即可求得结果.【详解】设扇形的半径为,弧长为.由题意:,解得,所以扇形的周长为,故选:A.【点睛】本题考查扇形的弧长和面积公式,属基础题.3、B【解析】根据运算得到函数解析式作图判断.【详解】,其图象如图所示:故选:B4、C【解析】直接利用三角函数关系式的恒等变换和特殊角的三角函数的值求出结果【详解】在中,,则,,,,故选C【点睛】本题考查的知识要点:三角函数关系式的恒等变换和特殊角三角函数的值的应用,主要考查学生的运算能力和转化能力,属于基础题型5、A【解析】因为过点和的直线与直线平行,所以两直线的斜率相等.【详解】解:∵直线的斜率等于,∴过点和的直线的斜率也是,,解得,故选:A.【点睛】本题考查两斜率存在的直线平行的条件是斜率相等,以及斜率公式的应用.6、B【解析】先用根与系数的关系可得+=,=4,从而可得<0,<0,进而,所以,然后求的值,从而可求出的值.【详解】由题意得+=,=4,所以,又、,故,所以,又.所以.故选:B.7、B【解析】利用向量垂直的坐标表示可以求解.【详解】因为,,所以,即;故选:B.【点睛】本题主要考查平面向量垂直的坐标表示,熟记公式是求解的关键,侧重考查数学运算的核心素养.8、D【解析】根据向量的运算性质展开可得,再代入向量的数量积公式即可得解.【详解】根据向量运算性质,,故选:D9、D【解析】因为,所以将函数的图象向左平移个单位,选D.考点:三角函数图像变换【易错点睛】对y=Asin(ωx+φ)进行图象变换时应注意以下两点:(1)平移变换时,x变为x±a(a>0),变换后的函数解析式为y=Asin[ω(x±a)+φ];(2)伸缩变换时,x变为(横坐标变为原来的k倍),变换后的函数解析式为y=Asin(x+φ)10、C【解析】,选C.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】如图以点为坐标原点,分别以为轴建立空间直角坐标系,利用空间向量求解即可.【详解】解:因为三棱柱为直三棱柱,且,所以以点为坐标原点,分别以为轴建立空间直角坐标系,设,则,所以,所以,因为异面直线所成的角在,所以异面直线与所成的角等于,故答案为:【点睛】此题考查异面直线所成角,利用了空间向量进行求解,属于基础题.12、②③【解析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取可判断命题④的正误.综合可得出结论.【详解】对于命题①,,,则,所以,函数的图象不关于轴对称,命题①错误;对于命题②,函数的定义域为,定义域关于原点对称,,所以,函数的图象关于原点对称,命题②正确;对于命题③,,,则,所以,函数的图象关于直线对称,命题③正确;对于命题④,当时,,则,命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.第ⅠⅠ卷13、2400【解析】由题意直接利用指数幂的运算得到结果【详解】12年后的价格可降为81002400元故答案为2400【点睛】本题考查了指数函数模型的应用,考查了推理能力与计算能力,属于基础题14、①.②.##【解析】利用基本不等式的性质即可求出最大值,再通过消元转化为二次函数求最值即可.【详解】解:由题意,得4=2a+b≥2,当且仅当2a=b,即a=1,b=2时等号成立,所以0<ab≤2,所以ab的最大值为2,a2+b2=a2+(4-2a)2=5a2-16a+16=5(a-)2+≥,当a=,b=时取等号.故答案为:,.15、①.②.【解析】计算的值,可得出定点坐标;分析可知,对任意的,,利用参变量分离法可求得,分、、三种情况讨论,分析函数在上的单调性,由此可得出实数的取值范围.【详解】因为,故函数图象恒过的定点坐标为;由题意可知,对任意的,,则,因为函数在上单调递增,且当时,,所以,.当时,在上为减函数,函数为增函数,所以,函数、在上均为减函数,此时,函数在上为减函数,合乎题意;当且时,,不合乎题意;当时,在上为增函数,函数为增函数,函数、在上均为增函数,此时,函数在上为增函数,不合乎题意.综上所述,若在上单调递减,.故答案为:;.16、【解析】先求出函数的定义域,再利用求复合函数单调区间的方法求解即得.【详解】依题意,由得:或,即函数的定义域是,函数在上单调递减,在上单调递增,而在上单调递增,于是得在是单调递减,在上单调递增,所以函数的单调递增区间为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I);(II).【解析】(Ⅰ)由偶函数在时递减,时递增,即可判断(2)和的大小关系;(Ⅱ)由题意可得在时有且只有一个实根,可得在时有且只有一个实根,可令,则,求得导数判断单调性,计算可得所求范围【详解】解:(Ⅰ)函数f(x)是偶函数,且x≤0时,f(x)=-,可得f(x)在x<0时递减,x>0时递增,由f(-3)=f(3),可得f(2)<f(3),即有f(2)<f(-3);(Ⅱ)设g(x)=2(1-3a)ex+2a+(其中x>0,a∈R),若函数f(x)的图象与函数g(x)的图象有且仅有一个公共点,即为2(1-3a)ex+2a+=-在x>0时有且只有一个实根,可得3a=在x>0时有且只有一个实根,可令t=ex(t>1),则h(t)=,h′(t)=,在t>1时,h′(t)<0,h(t)递减,可得h(t)∈(0,),则3a∈(0,),即a∈(0,)另解:令t=ex(t>1),则h(t)==1+,可令k=4t+7(k>11),可得h(t)=1+,由3k+在k>11递增,可得h(t)在k>11递减,可得h(t)∈(0,),则3a∈(0,),即a∈(0,)【点睛】本题考查函数的奇偶性和单调性的判断和运用,考查函数方程的转化思想,以及构造函数法,运用导数判断单调性,考查化简整理的运算能力,属于中档题.18、(1);(2).【解析】(1)根据二次函数的性质研究情况下的单调性和值域,根据对数复合函数的单调性及其开区间最值,列不等式求参数范围.(2)将问题化为在内有唯一零点,利用二次函数的性质求参数范围即可.【小问1详解】由题设,,,所以在定义域上递增,在上递减,在上递增,又在内有最小值,当,即时,在上递减,上递增,此时的值域为,则;所以,可得;当,即时,在上递减,上递增,此时是值域上的一个子区间,则;所以开区间上不存在最值.综上,.【小问2详解】由,则,要使在(1,2)内有唯一零点,所以在内有唯一零点,又开口向上且对称轴为,所以,可得.19、(1)(2)【解析】(1)先解分式不等式和二次不等式得集合,再求补集和交集即可;(2)先判断得,再根据必要条件得到集合的包含关系,列不等式求解即可.【小问1详解】∵时,,,全集,∴或.∴【小问2详解】∵命题:,命题:,是必要条件,∴∵,∴,∵,,∴,解得或,故实数的取值范围20、(1);(2),,【解析】(1)根据指数、对数运算性质求解即可.(2)根据三角函数定义求解即可.【详解】(1).(2)由题知:,所以,,21、(1);(2).【解析】(1)根据的零点和对称中心确定出的取值情况,再根据在上的零点个数确定出,由此确定出的取值,结合求解出的取值,再根据以及的范围确定出的取值,由此求解出的解析式;(2)先根据在上单调确定出的范围,由此确定出的可取值,再对从大到小进行分析,由此确定出的最大值.【详解】(1)因为是的零点,为图象的对称轴,所以,所以,因为在内有且仅有个零点,分析正弦函数函数图象可知:个零点对应的最短区间长度为,最长的区间长度小于,所以,所以,所以,所以,所以,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论